Home > Research > Publications & Outputs > Performance of the NGX High-Resolution Multiple...

Links

Text available via DOI:

View graph of relations

Performance of the NGX High-Resolution Multiple Collector Noble Gas Mass Spectrometer

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Performance of the NGX High-Resolution Multiple Collector Noble Gas Mass Spectrometer. / Li, Y.; Tootell, D.; Holland, G. et al.
In: Geochemistry, Geophysics, Geosystems, Vol. 22, No. 11, e2021GC009997, 30.11.2021.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Li, Y, Tootell, D, Holland, G & Zhou, Z 2021, 'Performance of the NGX High-Resolution Multiple Collector Noble Gas Mass Spectrometer', Geochemistry, Geophysics, Geosystems, vol. 22, no. 11, e2021GC009997. https://doi.org/10.1029/2021GC009997

APA

Li, Y., Tootell, D., Holland, G., & Zhou, Z. (2021). Performance of the NGX High-Resolution Multiple Collector Noble Gas Mass Spectrometer. Geochemistry, Geophysics, Geosystems, 22(11), Article e2021GC009997. https://doi.org/10.1029/2021GC009997

Vancouver

Li Y, Tootell D, Holland G, Zhou Z. Performance of the NGX High-Resolution Multiple Collector Noble Gas Mass Spectrometer. Geochemistry, Geophysics, Geosystems. 2021 Nov 30;22(11):e2021GC009997. Epub 2021 Nov 13. doi: 10.1029/2021GC009997

Author

Li, Y. ; Tootell, D. ; Holland, G. et al. / Performance of the NGX High-Resolution Multiple Collector Noble Gas Mass Spectrometer. In: Geochemistry, Geophysics, Geosystems. 2021 ; Vol. 22, No. 11.

Bibtex

@article{7e2557886b734a2a97750334ea2db8f0,
title = "Performance of the NGX High-Resolution Multiple Collector Noble Gas Mass Spectrometer",
abstract = "This paper describes the design, setup, and performance of a new analytical system installed at Lancaster University, UK, to determine noble gas isotopes in gas samples using an NGX high-resolution multiple collector noble gas mass spectrometer. The fixed position Faraday cups are configured to simultaneously measure all nine Xe isotopes whilst permitting all other noble gases, such as He, to be analyzed in peak jumping mode. The stability, sensitivity, and reproducibility of the measurements using this new noble gas analytical system were examined by repeating runs of atmospheric air. Reproducibility of the measurements obtained from 90 and 73 air standard runs are 4.2% and 0.4% for 3He/4He and 21Ne/20Ne, respectively. There is no significant difference in the 40Ar/36Ar ratio measurements with various 40Ar abundances, suggesting good sensitivity and pressure linearity of the NGX instrument. The standard errors for 124Xe/130Xe, 126Xe/130Xe, 128Xe/130Xe, 129Xe/130Xe, 131Xe/130Xe, 132Xe/130Xe, 134Xe/130Xe and 136Xe/130Xe in 46 air measurements are 0.782%, 0.804%, 0.053%, 0.029%, 0.029%, 0.029%, 0.030%, and 0.031%, respectively. In contrast, the corresponding reference values from Basford et al. (1973) are 0.342%, 0.505%, 0.148%, 0.139%, 0.153%, 0.076%, 0.156%, and 0.138%, respectively. This suggests that multicollection measurements of Xe isotopes on Faraday cups using the NGX have higher precision than the previous results except for 124Xe and 126Xe, where low abundances affect the measurement precision. Compared to traditional peak jumping single-collector mass spectrometers, the NGX has significantly decreased analytical time in Xe analysis by allowing simultaneous measurements of all isotopes. As a consequence, high analytical precision can be achieved. ",
keywords = "Binary alloys, Inert gases, Mass spectrometers, Potassium alloys, Uranium alloys, Analytical systems, Faraday cups, Gas mass spectrometers, Gas samples, High resolution, Lancaster University, Measurements of, Noble gas isotopes, Performance, Reproducibilities, Isotopes",
author = "Y. Li and D. Tootell and G. Holland and Z. Zhou",
year = "2021",
month = nov,
day = "30",
doi = "10.1029/2021GC009997",
language = "English",
volume = "22",
journal = "Geochemistry, Geophysics, Geosystems",
issn = "1525-2027",
publisher = "John Wiley & Sons, Ltd",
number = "11",

}

RIS

TY - JOUR

T1 - Performance of the NGX High-Resolution Multiple Collector Noble Gas Mass Spectrometer

AU - Li, Y.

AU - Tootell, D.

AU - Holland, G.

AU - Zhou, Z.

PY - 2021/11/30

Y1 - 2021/11/30

N2 - This paper describes the design, setup, and performance of a new analytical system installed at Lancaster University, UK, to determine noble gas isotopes in gas samples using an NGX high-resolution multiple collector noble gas mass spectrometer. The fixed position Faraday cups are configured to simultaneously measure all nine Xe isotopes whilst permitting all other noble gases, such as He, to be analyzed in peak jumping mode. The stability, sensitivity, and reproducibility of the measurements using this new noble gas analytical system were examined by repeating runs of atmospheric air. Reproducibility of the measurements obtained from 90 and 73 air standard runs are 4.2% and 0.4% for 3He/4He and 21Ne/20Ne, respectively. There is no significant difference in the 40Ar/36Ar ratio measurements with various 40Ar abundances, suggesting good sensitivity and pressure linearity of the NGX instrument. The standard errors for 124Xe/130Xe, 126Xe/130Xe, 128Xe/130Xe, 129Xe/130Xe, 131Xe/130Xe, 132Xe/130Xe, 134Xe/130Xe and 136Xe/130Xe in 46 air measurements are 0.782%, 0.804%, 0.053%, 0.029%, 0.029%, 0.029%, 0.030%, and 0.031%, respectively. In contrast, the corresponding reference values from Basford et al. (1973) are 0.342%, 0.505%, 0.148%, 0.139%, 0.153%, 0.076%, 0.156%, and 0.138%, respectively. This suggests that multicollection measurements of Xe isotopes on Faraday cups using the NGX have higher precision than the previous results except for 124Xe and 126Xe, where low abundances affect the measurement precision. Compared to traditional peak jumping single-collector mass spectrometers, the NGX has significantly decreased analytical time in Xe analysis by allowing simultaneous measurements of all isotopes. As a consequence, high analytical precision can be achieved.

AB - This paper describes the design, setup, and performance of a new analytical system installed at Lancaster University, UK, to determine noble gas isotopes in gas samples using an NGX high-resolution multiple collector noble gas mass spectrometer. The fixed position Faraday cups are configured to simultaneously measure all nine Xe isotopes whilst permitting all other noble gases, such as He, to be analyzed in peak jumping mode. The stability, sensitivity, and reproducibility of the measurements using this new noble gas analytical system were examined by repeating runs of atmospheric air. Reproducibility of the measurements obtained from 90 and 73 air standard runs are 4.2% and 0.4% for 3He/4He and 21Ne/20Ne, respectively. There is no significant difference in the 40Ar/36Ar ratio measurements with various 40Ar abundances, suggesting good sensitivity and pressure linearity of the NGX instrument. The standard errors for 124Xe/130Xe, 126Xe/130Xe, 128Xe/130Xe, 129Xe/130Xe, 131Xe/130Xe, 132Xe/130Xe, 134Xe/130Xe and 136Xe/130Xe in 46 air measurements are 0.782%, 0.804%, 0.053%, 0.029%, 0.029%, 0.029%, 0.030%, and 0.031%, respectively. In contrast, the corresponding reference values from Basford et al. (1973) are 0.342%, 0.505%, 0.148%, 0.139%, 0.153%, 0.076%, 0.156%, and 0.138%, respectively. This suggests that multicollection measurements of Xe isotopes on Faraday cups using the NGX have higher precision than the previous results except for 124Xe and 126Xe, where low abundances affect the measurement precision. Compared to traditional peak jumping single-collector mass spectrometers, the NGX has significantly decreased analytical time in Xe analysis by allowing simultaneous measurements of all isotopes. As a consequence, high analytical precision can be achieved.

KW - Binary alloys

KW - Inert gases

KW - Mass spectrometers

KW - Potassium alloys

KW - Uranium alloys

KW - Analytical systems

KW - Faraday cups

KW - Gas mass spectrometers

KW - Gas samples

KW - High resolution

KW - Lancaster University

KW - Measurements of

KW - Noble gas isotopes

KW - Performance

KW - Reproducibilities

KW - Isotopes

U2 - 10.1029/2021GC009997

DO - 10.1029/2021GC009997

M3 - Journal article

VL - 22

JO - Geochemistry, Geophysics, Geosystems

JF - Geochemistry, Geophysics, Geosystems

SN - 1525-2027

IS - 11

M1 - e2021GC009997

ER -