Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids
AU - Rubbi, F.
AU - Habib, K.
AU - Saidur, R.
AU - Aslfattahi, N.
AU - Yahya, S.M.
AU - Das, L.
PY - 2020/9/15
Y1 - 2020/9/15
N2 - In this research, a new class of nanofluid is successfully formulated from Soybean oil and MXene (Ti3C2) particles to implement as working fluid on a hybrid photovoltaic-thermal (PV/T) solar collector for performance optimization. This study emphasizes on the preparation of the Soybean oil/MXene (SO/Ti3C2) nanofluid, optical and thermal characterization of the nanofluid including suspension stability. The SO/Ti3C2 nanofluid samples are formulated suspending two-dimensional (2D) MXene particles at 0.025–0.125 wt% concentrations into pure Soybean oil. SEM, UV–vis, FTIR and TGA analysis are performed for morphology, optical and thermal stability characterization respectively. Achieved thermal conductivity results of SO/Ti3C2 nanofluid for 0.125 wt% of Ti3C2 exhibited 60.82% enhancement at 55 °C compared to pure Soybean oil. The specific heat capacity (cp) of formulated nanofluids is measured employing a differential scanning calorimeter (DSC). Maximum cp augmentation is found to be 24.49% at 0.125 wt% loading of Ti3C2 in the base oil. Numerical implementation of the prepared SO/Ti3C2 nanofluids on PV/T is performed using COMSOL Multiphysics software resulted noteworthy improvement compared to conventional water, Alumina/water and MXene/palm oil nanofluids as working fluid. Overall thermal effectiveness of the PV/T system is achieved 84.25% using SO/Ti3C2 nanofluids at 0.07 kg/s mass flow rate. Furthermore, employing the nanofluids electrical output of the PV/T is improved by 15.44% in comparison with water/alumina nanofluids at an irradiance of 1000 W/m2 and mass flow rate of 0.07 kg/s. The stated findings indicate overall effectiveness of the Soybean oil based MXene nanofluids over conventional fluids used for cooling purpose in the PV/T collector.
AB - In this research, a new class of nanofluid is successfully formulated from Soybean oil and MXene (Ti3C2) particles to implement as working fluid on a hybrid photovoltaic-thermal (PV/T) solar collector for performance optimization. This study emphasizes on the preparation of the Soybean oil/MXene (SO/Ti3C2) nanofluid, optical and thermal characterization of the nanofluid including suspension stability. The SO/Ti3C2 nanofluid samples are formulated suspending two-dimensional (2D) MXene particles at 0.025–0.125 wt% concentrations into pure Soybean oil. SEM, UV–vis, FTIR and TGA analysis are performed for morphology, optical and thermal stability characterization respectively. Achieved thermal conductivity results of SO/Ti3C2 nanofluid for 0.125 wt% of Ti3C2 exhibited 60.82% enhancement at 55 °C compared to pure Soybean oil. The specific heat capacity (cp) of formulated nanofluids is measured employing a differential scanning calorimeter (DSC). Maximum cp augmentation is found to be 24.49% at 0.125 wt% loading of Ti3C2 in the base oil. Numerical implementation of the prepared SO/Ti3C2 nanofluids on PV/T is performed using COMSOL Multiphysics software resulted noteworthy improvement compared to conventional water, Alumina/water and MXene/palm oil nanofluids as working fluid. Overall thermal effectiveness of the PV/T system is achieved 84.25% using SO/Ti3C2 nanofluids at 0.07 kg/s mass flow rate. Furthermore, employing the nanofluids electrical output of the PV/T is improved by 15.44% in comparison with water/alumina nanofluids at an irradiance of 1000 W/m2 and mass flow rate of 0.07 kg/s. The stated findings indicate overall effectiveness of the Soybean oil based MXene nanofluids over conventional fluids used for cooling purpose in the PV/T collector.
KW - Hybrid PV/T system
KW - MXene
KW - Nanofluids
KW - Soybean oil
KW - Stability
KW - Thermal and optical properties
U2 - 10.1016/j.solener.2020.07.060
DO - 10.1016/j.solener.2020.07.060
M3 - Journal article
VL - 208
SP - 124
EP - 138
JO - Solar Energy
JF - Solar Energy
SN - 0038-092X
ER -