Home > Research > Publications & Outputs > Petroleum hydrocarbon rhizoremediation and soil...

Electronic data

  • Hoang_CHEM_Rhizorem_preprint

    Rights statement: This is the author’s version of a work that was accepted for publication in Chemosphere. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemosphere, ?, ?, 2021 DOI: 10.1016/j.chemosphere.2021.130135

    Accepted author manuscript, 1.1 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Petroleum hydrocarbon rhizoremediation and soil microbial activity improvement via cluster root formation by wild proteaceae plant species

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • S.A. Hoang
  • Dane Lamb
  • B. Seshadri
  • B. Sarkar
  • Y. Cheng
  • L. Wang
  • N.S. Bolan
Close
Article number130135
<mark>Journal publication date</mark>1/07/2021
<mark>Journal</mark>Chemosphere
Volume275
Number of pages13
Publication StatusPublished
Early online date26/02/21
<mark>Original language</mark>English

Abstract

Rhizoremediation potential of different wild plant species for total (aliphatic) petroleum hydrocarbon (TPH)-contaminated soils was investigated. Three-week-old seedlings of Acacia inaequilatera, Acacia pyrifolia, Acacia stellaticeps, Banksia seminuda, Chloris truncata, Hakea prostrata, Hardenbergia violacea, and Triodia wiseana were transplanted in a soil contaminated with diesel and engine oil as TPH at pollution levels of 4,370 (TPH1) and 7,500 (TPH2) mg kg−1, and an uncontaminated control (TPH0). After 150 days, the presence of TPH negatively affected the plant growth, but the growth inhibition effect varied between the plant species. Plant growth and associated root biomass influenced the activity of rhizo-microbiome. The presence of B. seminuda, C. truncata, and H. prostrata significantly increased the TPH removal rate (up to 30% compared to the unplanted treatment) due to the stimulation of rhizosphere microorganisms. No significant difference was observed between TPH1 and TPH2 regarding the plant tolerance and rhizoremediation potentials of the three plant species. The presence of TPH stimulated cluster root formation in B. seminuda and H. prostrata which was associated with enhanced TPH remediation of these two members of Proteaceae family. These results indicated that B. seminuda, C. truncata, and H. prostrata wild plant species could be suitable candidates for the rhizoremediation of TPH-contaminated soil.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Chemosphere. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemosphere, ?, ?, 2021 DOI: 10.1016/j.chemosphere.2021.130135