Final published version
Licence: CC BY-NC
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Phosphorus-induced interfacial chemistry via electrolyte design for dense and highly stable potassium metal anodes †
AU - Xie, Junpeng
AU - Yu, Zhenjiang
AU - Li, Jinliang
AU - Zhang, Qing
AU - Mai, Wenjie
AU - Tai, Zhixin
AU - Liu, Yajie
AU - Guo, Zaiping
PY - 2025/8/15
Y1 - 2025/8/15
N2 - Potassium (K) metal anodes have attracted widespread attention in the realm of energy storage due to their cost-effectiveness, abundance, and high theoretical capacity. However, the undesirable K-dendrite growth accompanied by void formation upon prolonged cycling presents formidable obstacles to their real-world applications. Herein, phosphorus-based electrolytes are developed based on the electrolyte additive design criteria of steric hindrance, polar ability, and decomposition preference to enhance the anode/electrolyte interface stability. The additive triphenyl phosphate in the electrolyte could regulate the K+ solvation structure and promote the formation of an inorganic P-rich solid-electrolyte interphase layer, thus ultimately mitigating interfacial polarization, augmenting transport properties, and stabilizing the interphase. Therefore, we have successfully achieved a dense and dendrite-free K metal anode, exhibiting improved coulombic efficiency and prolonged lifespan. Our design tactic demonstrates the promising application of K metal batteries in achieving elevated safety, high energy densities, and extended operational longevity.
AB - Potassium (K) metal anodes have attracted widespread attention in the realm of energy storage due to their cost-effectiveness, abundance, and high theoretical capacity. However, the undesirable K-dendrite growth accompanied by void formation upon prolonged cycling presents formidable obstacles to their real-world applications. Herein, phosphorus-based electrolytes are developed based on the electrolyte additive design criteria of steric hindrance, polar ability, and decomposition preference to enhance the anode/electrolyte interface stability. The additive triphenyl phosphate in the electrolyte could regulate the K+ solvation structure and promote the formation of an inorganic P-rich solid-electrolyte interphase layer, thus ultimately mitigating interfacial polarization, augmenting transport properties, and stabilizing the interphase. Therefore, we have successfully achieved a dense and dendrite-free K metal anode, exhibiting improved coulombic efficiency and prolonged lifespan. Our design tactic demonstrates the promising application of K metal batteries in achieving elevated safety, high energy densities, and extended operational longevity.
U2 - 10.1039/d5sc02822a
DO - 10.1039/d5sc02822a
M3 - Journal article
JO - Chemical Science
JF - Chemical Science
SN - 2041-6520
ER -