Home > Research > Publications & Outputs > Photoinhibition of Photosystem I Provides Oxida...

Links

Text available via DOI:

View graph of relations

Photoinhibition of Photosystem I Provides Oxidative Protection During Imbalanced Photosynthetic Electron Transport in Arabidopsis thaliana

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Yugo Lima-Melo
  • Vincente Thiago Candido Barros Alencar
  • Ana Karla Moreira Lobo
  • Rachel Hellen Sousa
  • Mikko Tikkanen
  • Eva-Mari Aro
  • Joaquim A. G. Silveira
  • Peter J. Gollan
Close
Article number916
<mark>Journal publication date</mark>12/07/2019
<mark>Journal</mark>Frontiers in Plant Science
Volume10
Number of pages13
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Photosynthesis involves the conversion of sunlight energy into stored chemical energy, which is achieved through electron transport along a series of redox reactions. Excess photosynthetic electron transport might be dangerous due to the risk of molecular oxygen reduction, generating reactive oxygen species (ROS) over-accumulation. Avoiding excess ROS production requires the rate of electron transport to be coordinated with the capacity of electron acceptors in the chloroplast stroma. Imbalance between the donor and acceptor sides of photosystem I (PSI) can lead to inactivation, which is called PSI photoinhibition. We used a light-inducible PSI photoinhibition system in Arabidopsis thaliana to resolve the time dynamics of inhibition and to investigate its impact on ROS production and turnover. The oxidation state of the PSI reaction center and rates of CO 2 fixation both indicated strong and rapid PSI photoinhibition upon donor side/acceptor side imbalance, while the rate of inhibition eased during prolonged imbalance. PSI photoinhibition was not associated with any major changes in ROS accumulation or antioxidant activity; however, a lower level of lipid oxidation correlated with lower abundance of chloroplast lipoxygenase in PSI-inhibited leaves. The results of this study suggest that rapid activation of PSI photoinhibition under severe photosynthetic imbalance protects the chloroplast from over-reduction and excess ROS formation.