Home > Research > Publications & Outputs > Photorespiration in C4 grasses remains slow und...
View graph of relations

Photorespiration in C4 grasses remains slow under drought conditions

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Photorespiration in C4 grasses remains slow under drought conditions. / Carmo-Silva, Ana E.; Powers, Stephen J.; Keys, Alfred J. et al.
In: Plant, Cell and Environment, Vol. 31, No. 7, 07.2008, p. 925-940.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Carmo-Silva, AE, Powers, SJ, Keys, AJ, Arrabaça, MC & Parry, MAJ 2008, 'Photorespiration in C4 grasses remains slow under drought conditions', Plant, Cell and Environment, vol. 31, no. 7, pp. 925-940. https://doi.org/10.1111/j.1365-3040.2008.01805.x

APA

Carmo-Silva, A. E., Powers, S. J., Keys, A. J., Arrabaça, M. C., & Parry, M. A. J. (2008). Photorespiration in C4 grasses remains slow under drought conditions. Plant, Cell and Environment, 31(7), 925-940. https://doi.org/10.1111/j.1365-3040.2008.01805.x

Vancouver

Carmo-Silva AE, Powers SJ, Keys AJ, Arrabaça MC, Parry MAJ. Photorespiration in C4 grasses remains slow under drought conditions. Plant, Cell and Environment. 2008 Jul;31(7):925-940. Epub 2008 Mar 11. doi: 10.1111/j.1365-3040.2008.01805.x

Author

Carmo-Silva, Ana E. ; Powers, Stephen J. ; Keys, Alfred J. et al. / Photorespiration in C4 grasses remains slow under drought conditions. In: Plant, Cell and Environment. 2008 ; Vol. 31, No. 7. pp. 925-940.

Bibtex

@article{df16ba21796d4de8b36def05b1a49257,
title = "Photorespiration in C4 grasses remains slow under drought conditions",
abstract = "The CO2-concentrating mechanism present in C4 plants decreases the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and, consequently, photorespiratory rates in air. Under drought conditions, the intercellular CO2 concentration may decrease and cause photorespiration to increase. The C4 grasses Paspalum dilatatum Poiret, Cynodon dactylon (L.) Pers. and Zoysia japonica Steudel were grown in soil and drought was imposed by ceasing to provide water. Net CO2 assimilation (A) and stomatal conductance to water vapour decreased with leaf dehydration. Decreased carbon and increased oxygen isotope composition were also observed under drought. The response of A to CO 2 suggested that the compensation point was zero in all species irrespective of the extent of drought stress. A slight decrease of A as O 2 concentration increased above 10% provided evidence for slow photorespiratory gas exchanges. Analysis of amino acids contained in the leaves, particularly the decrease of glycine after 30 s in darkness, supported the presence of slow photorespiration rates, but these were slightly faster in Cynodon dactylon than in Paspalum dilatatum and Zoysia japonica. Although the contents of glycine and serine increased with dehydration and mechanistic modelling of C4 photosynthesis suggested slightly increased photorespiration rates in proportion to photosynthesis, the results provide evidence that photorespiration remained slow under drought conditions.",
keywords = "Amino acids, CO and O response curves, Isotope composition, Modelling C photosynthesis",
author = "Carmo-Silva, {Ana E.} and Powers, {Stephen J.} and Keys, {Alfred J.} and Arraba{\c c}a, {Maria Celeste} and Parry, {Martin A. J.}",
year = "2008",
month = jul,
doi = "10.1111/j.1365-3040.2008.01805.x",
language = "English",
volume = "31",
pages = "925--940",
journal = "Plant, Cell and Environment",
issn = "0140-7791",
publisher = "Wiley",
number = "7",

}

RIS

TY - JOUR

T1 - Photorespiration in C4 grasses remains slow under drought conditions

AU - Carmo-Silva, Ana E.

AU - Powers, Stephen J.

AU - Keys, Alfred J.

AU - Arrabaça, Maria Celeste

AU - Parry, Martin A. J.

PY - 2008/7

Y1 - 2008/7

N2 - The CO2-concentrating mechanism present in C4 plants decreases the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and, consequently, photorespiratory rates in air. Under drought conditions, the intercellular CO2 concentration may decrease and cause photorespiration to increase. The C4 grasses Paspalum dilatatum Poiret, Cynodon dactylon (L.) Pers. and Zoysia japonica Steudel were grown in soil and drought was imposed by ceasing to provide water. Net CO2 assimilation (A) and stomatal conductance to water vapour decreased with leaf dehydration. Decreased carbon and increased oxygen isotope composition were also observed under drought. The response of A to CO 2 suggested that the compensation point was zero in all species irrespective of the extent of drought stress. A slight decrease of A as O 2 concentration increased above 10% provided evidence for slow photorespiratory gas exchanges. Analysis of amino acids contained in the leaves, particularly the decrease of glycine after 30 s in darkness, supported the presence of slow photorespiration rates, but these were slightly faster in Cynodon dactylon than in Paspalum dilatatum and Zoysia japonica. Although the contents of glycine and serine increased with dehydration and mechanistic modelling of C4 photosynthesis suggested slightly increased photorespiration rates in proportion to photosynthesis, the results provide evidence that photorespiration remained slow under drought conditions.

AB - The CO2-concentrating mechanism present in C4 plants decreases the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and, consequently, photorespiratory rates in air. Under drought conditions, the intercellular CO2 concentration may decrease and cause photorespiration to increase. The C4 grasses Paspalum dilatatum Poiret, Cynodon dactylon (L.) Pers. and Zoysia japonica Steudel were grown in soil and drought was imposed by ceasing to provide water. Net CO2 assimilation (A) and stomatal conductance to water vapour decreased with leaf dehydration. Decreased carbon and increased oxygen isotope composition were also observed under drought. The response of A to CO 2 suggested that the compensation point was zero in all species irrespective of the extent of drought stress. A slight decrease of A as O 2 concentration increased above 10% provided evidence for slow photorespiratory gas exchanges. Analysis of amino acids contained in the leaves, particularly the decrease of glycine after 30 s in darkness, supported the presence of slow photorespiration rates, but these were slightly faster in Cynodon dactylon than in Paspalum dilatatum and Zoysia japonica. Although the contents of glycine and serine increased with dehydration and mechanistic modelling of C4 photosynthesis suggested slightly increased photorespiration rates in proportion to photosynthesis, the results provide evidence that photorespiration remained slow under drought conditions.

KW - Amino acids

KW - CO and O response curves

KW - Isotope composition

KW - Modelling C photosynthesis

U2 - 10.1111/j.1365-3040.2008.01805.x

DO - 10.1111/j.1365-3040.2008.01805.x

M3 - Journal article

C2 - 18331589

AN - SCOPUS:44949123681

VL - 31

SP - 925

EP - 940

JO - Plant, Cell and Environment

JF - Plant, Cell and Environment

SN - 0140-7791

IS - 7

ER -