Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Phytohormone profiles of lettuce and pepper grown aeroponically with elevated root-zone carbon dioxide concentrations
AU - Leibar-Porcel, E.
AU - McAinsh, M.R.
AU - Dodd, I.C.
PY - 2020/5/9
Y1 - 2020/5/9
N2 - Enhancing root-zone (RZ) dissolved inorganic carbon (DIC) levels of plants grown aeroponically can increase biomass accumulation but may also alter phytohormone profiles in planta. These experiments investigated how CO2 gas (1500 ppm) added to an aeroponic system affected phytohormone concentrations of lettuce (Lactuca sativa) and sweet pepper (Capsicum annuum) plants. Phytohormonal profiling of root and leaf tissues revealed a solitary treatment difference in lettuce plants, an increased shoot jasmonic acid (JA) concentration under elevated RZ CO2. Since JA is considered a growth inhibitor, growth promotion of lettuce under elevated RZ CO2 does not seem related to its phytohormone profile. On the other hand, pepper plants showed changes in foliar phytohormone (aminocyclopropane-1-carboxylic acid, ACC, trans-zeatin, tZ and salicylic acid, SA) concentrations, which were correlated with decreased leaf growth in some experiments. Foliar accumulation of ACC alongside decreased leaf tZ concentrations may mask a positive effect of elevated RZ CO2 on pepper growth. Diverse phytohormone responses to elevated RZ CO2 between different species may be involved in their different growth responses. © 2020 by the authors.
AB - Enhancing root-zone (RZ) dissolved inorganic carbon (DIC) levels of plants grown aeroponically can increase biomass accumulation but may also alter phytohormone profiles in planta. These experiments investigated how CO2 gas (1500 ppm) added to an aeroponic system affected phytohormone concentrations of lettuce (Lactuca sativa) and sweet pepper (Capsicum annuum) plants. Phytohormonal profiling of root and leaf tissues revealed a solitary treatment difference in lettuce plants, an increased shoot jasmonic acid (JA) concentration under elevated RZ CO2. Since JA is considered a growth inhibitor, growth promotion of lettuce under elevated RZ CO2 does not seem related to its phytohormone profile. On the other hand, pepper plants showed changes in foliar phytohormone (aminocyclopropane-1-carboxylic acid, ACC, trans-zeatin, tZ and salicylic acid, SA) concentrations, which were correlated with decreased leaf growth in some experiments. Foliar accumulation of ACC alongside decreased leaf tZ concentrations may mask a positive effect of elevated RZ CO2 on pepper growth. Diverse phytohormone responses to elevated RZ CO2 between different species may be involved in their different growth responses. © 2020 by the authors.
KW - Aeroponics
KW - Hydroponics
KW - Lettuce
KW - Pepper
KW - Phytohormones
KW - Root-zone CO2
U2 - 10.3390/agronomy10050665
DO - 10.3390/agronomy10050665
M3 - Journal article
VL - 10
JO - Agronomy
JF - Agronomy
SN - 2073-4395
IS - 5
M1 - 665
ER -