Research output: Working paper

Published

Publication date | 2003 |
---|---|

Place of Publication | Lancaster University |

Publisher | The Department of Management Science |

Number of pages | 0 |

<mark>Original language</mark> | English |

Name | Management Science Working Paper Series |
---|

The comb inequalities are a well-known class of facet-inducing inequalities for the Travelling Salesman Problem, defined in terms of certain vertex sets called the handle and the teeth. We say that a comb inequality is simple if the following holds for each tooth: either the intersection of the tooth with the handle has cardinality one, or the part of the tooth outside the handle has cardinality one, or both. The simple comb inequalities generalize the classical 2-matching inequalities of Edmonds, and also the so-called Chvatal comb inequalities. In 1982, Padberg and Rao [29] gave a polynomial-time algorithm for separating the 2-matching inequalities - i.e., for testing if a given fractional solution to an LP relaxation violates a 2-matching inequality. We extend this significantly by giving a polynomial-time algorithm for separating the simple comb inequalities. The key is a result due to Caprara and Fischetti.

This was eventually published as: L.K. Fleischer, A.N. Letchford & A. Lodi (2006) Polynomial-time separation of a superclass of simple comb inequalities. Math. Oper. Res., 31(4), 696-713.