Home > Research > Publications & Outputs > Predicting long-term earnings growth from multi...


Text available via DOI:

View graph of relations

Predicting long-term earnings growth from multiple information sources

Research output: Contribution to Journal/MagazineJournal articlepeer-review

<mark>Journal publication date</mark>03/2014
<mark>Journal</mark>International Review of Financial Analysis
Number of pages14
Pages (from-to)71-84
Publication StatusPublished
<mark>Original language</mark>English


While expected long-term earnings growth plays a pivotal role in valuation and investment applications, its common proxy, analysts’ long-term growth forecasts (LTG), is well known for being over-optimistic. Guided by a stylized growth model, this paper uses three information sources to improve growth prediction—analysts’ forecasts, stock prices, and financial statements. We find that the growth model using LTG, past earnings growth, the forward earnings-to-price ratio and past returns as predictors is unbiased and most accurate among the models considered in this paper. We further show that this growth prediction results in higher trading profits, more accurate equity predictions, and more reliable estimates of cost of equity. The findings suggest that this improvement in growth prediction leads to economically significant consequences in valuation and investment applications.