Home > Research > Publications & Outputs > Predicting Risk of Serious Bacterial Infections...

Electronic data

  • Apr.17.risk_prediction.Peds.r2

    Rights statement: Copyright © 2017 by the American Academy of Pediatrics Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department Adam D. Irwin, Alison Grant, Rhian Williams, Ruwanthi Kolamunnage-Dona, Richard J. Drew, Stephane Paulus, Graham Jeffers, Kim Williams, Rachel Breen, Jennifer Preston, Duncan Appelbe, Christine Chesters, Paul Newland, Omnia Marzouk, Paul S. McNamara, Peter J. Diggle, Enitan D. Carrol Pediatrics Jul 2017, e20162853; DOI: 10.1542/peds.2016-2853

    Accepted author manuscript, 488 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Text available via DOI:

View graph of relations

Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department

Research output: Contribution to Journal/MagazineJournal articlepeer-review

E-pub ahead of print

Standard

Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department. / Irwin, Adam D.; Grant, Alison; Williams, Rhian et al.
In: Pediatrics, 05.07.2017.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Irwin, AD, Grant, A, Williams, R, Kolamunnage-Dona, R, Drew, RJ, Paulus, S, Jeffers, G, Williams, K, Breen, R, Preston, J, Appelbe, D, Chesters, C, Newland, P, Marzouk, O, McNamara, PS, Diggle, PJ & Carrol, ED 2017, 'Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department', Pediatrics. https://doi.org/10.1542/peds.2016-2853

APA

Irwin, A. D., Grant, A., Williams, R., Kolamunnage-Dona, R., Drew, R. J., Paulus, S., Jeffers, G., Williams, K., Breen, R., Preston, J., Appelbe, D., Chesters, C., Newland, P., Marzouk, O., McNamara, P. S., Diggle, P. J., & Carrol, E. D. (2017). Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department. Pediatrics. Advance online publication. https://doi.org/10.1542/peds.2016-2853

Vancouver

Irwin AD, Grant A, Williams R, Kolamunnage-Dona R, Drew RJ, Paulus S et al. Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department. Pediatrics. 2017 Jul 5. Epub 2017 Jul 5. doi: 10.1542/peds.2016-2853

Author

Irwin, Adam D. ; Grant, Alison ; Williams, Rhian et al. / Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department. In: Pediatrics. 2017.

Bibtex

@article{7b067f3f5adc450792b569c9015556d9,
title = "Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department",
abstract = "BACKGROUND: Improving the diagnosis of serious bacterial infections (SBIs) in the children's emergency department is a clinical priority. Early recognition reduces morbidity and mortality, and supporting clinicians in ruling out SBIs may limit unnecessary admissions and antibiotic use.METHODS: A prospective, diagnostic accuracy study of clinical and biomarker variables in the diagnosis of SBIs (pneumonia or other SBI) in febrile children <16 years old. A diagnostic model was derived by using multinomial logistic regression and internally validated. External validation of a published model was undertaken, followed by model updating and extension by the inclusion of procalcitonin and resistin.RESULTS: There were 1101 children studied, of whom 264 had an SBI. A diagnostic model discriminated well between pneumonia and no SBI (concordance statistic 0.84, 95% confidence interval 0.78-0.90) and between other SBIs and no SBI (0.77, 95% confidence interval 0.71-0.83) on internal validation. A published model discriminated well on external validation. Model updating yielded good calibration with good performance at both high-risk (positive likelihood ratios: 6.46 and 5.13 for pneumonia and other SBI, respectively) and low-risk (negative likelihood ratios: 0.16 and 0.13, respectively) thresholds. Extending the model with procalcitonin and resistin yielded improvements in discrimination.CONCLUSIONS: Diagnostic models discriminated well between pneumonia, other SBIs, and no SBI in febrile children in the emergency department. Improvements in the classification of nonevents have the potential to reduce unnecessary hospital admissions and improve antibiotic prescribing. The benefits of this improved risk prediction should be further evaluated in robust impact studies.",
keywords = "Journal Article",
author = "Irwin, {Adam D.} and Alison Grant and Rhian Williams and Ruwanthi Kolamunnage-Dona and Drew, {Richard J.} and Stephane Paulus and Graham Jeffers and Kim Williams and Rachel Breen and Jennifer Preston and Duncan Appelbe and Christine Chesters and Paul Newland and Omnia Marzouk and McNamara, {Paul S.} and Diggle, {Peter J.} and Carrol, {Enitan D.}",
note = "Copyright {\textcopyright} 2017 by the American Academy of Pediatrics Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department Adam D. Irwin, Alison Grant, Rhian Williams, Ruwanthi Kolamunnage-Dona, Richard J. Drew, Stephane Paulus, Graham Jeffers, Kim Williams, Rachel Breen, Jennifer Preston, Duncan Appelbe, Christine Chesters, Paul Newland, Omnia Marzouk, Paul S. McNamara, Peter J. Diggle, Enitan D. Carrol Pediatrics Jul 2017, e20162853; DOI: 10.1542/peds.2016-2853",
year = "2017",
month = jul,
day = "5",
doi = "10.1542/peds.2016-2853",
language = "English",
journal = "Pediatrics",
issn = "0031-4005",
publisher = "American Academy of Pediatrics",

}

RIS

TY - JOUR

T1 - Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department

AU - Irwin, Adam D.

AU - Grant, Alison

AU - Williams, Rhian

AU - Kolamunnage-Dona, Ruwanthi

AU - Drew, Richard J.

AU - Paulus, Stephane

AU - Jeffers, Graham

AU - Williams, Kim

AU - Breen, Rachel

AU - Preston, Jennifer

AU - Appelbe, Duncan

AU - Chesters, Christine

AU - Newland, Paul

AU - Marzouk, Omnia

AU - McNamara, Paul S.

AU - Diggle, Peter J.

AU - Carrol, Enitan D.

N1 - Copyright © 2017 by the American Academy of Pediatrics Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department Adam D. Irwin, Alison Grant, Rhian Williams, Ruwanthi Kolamunnage-Dona, Richard J. Drew, Stephane Paulus, Graham Jeffers, Kim Williams, Rachel Breen, Jennifer Preston, Duncan Appelbe, Christine Chesters, Paul Newland, Omnia Marzouk, Paul S. McNamara, Peter J. Diggle, Enitan D. Carrol Pediatrics Jul 2017, e20162853; DOI: 10.1542/peds.2016-2853

PY - 2017/7/5

Y1 - 2017/7/5

N2 - BACKGROUND: Improving the diagnosis of serious bacterial infections (SBIs) in the children's emergency department is a clinical priority. Early recognition reduces morbidity and mortality, and supporting clinicians in ruling out SBIs may limit unnecessary admissions and antibiotic use.METHODS: A prospective, diagnostic accuracy study of clinical and biomarker variables in the diagnosis of SBIs (pneumonia or other SBI) in febrile children <16 years old. A diagnostic model was derived by using multinomial logistic regression and internally validated. External validation of a published model was undertaken, followed by model updating and extension by the inclusion of procalcitonin and resistin.RESULTS: There were 1101 children studied, of whom 264 had an SBI. A diagnostic model discriminated well between pneumonia and no SBI (concordance statistic 0.84, 95% confidence interval 0.78-0.90) and between other SBIs and no SBI (0.77, 95% confidence interval 0.71-0.83) on internal validation. A published model discriminated well on external validation. Model updating yielded good calibration with good performance at both high-risk (positive likelihood ratios: 6.46 and 5.13 for pneumonia and other SBI, respectively) and low-risk (negative likelihood ratios: 0.16 and 0.13, respectively) thresholds. Extending the model with procalcitonin and resistin yielded improvements in discrimination.CONCLUSIONS: Diagnostic models discriminated well between pneumonia, other SBIs, and no SBI in febrile children in the emergency department. Improvements in the classification of nonevents have the potential to reduce unnecessary hospital admissions and improve antibiotic prescribing. The benefits of this improved risk prediction should be further evaluated in robust impact studies.

AB - BACKGROUND: Improving the diagnosis of serious bacterial infections (SBIs) in the children's emergency department is a clinical priority. Early recognition reduces morbidity and mortality, and supporting clinicians in ruling out SBIs may limit unnecessary admissions and antibiotic use.METHODS: A prospective, diagnostic accuracy study of clinical and biomarker variables in the diagnosis of SBIs (pneumonia or other SBI) in febrile children <16 years old. A diagnostic model was derived by using multinomial logistic regression and internally validated. External validation of a published model was undertaken, followed by model updating and extension by the inclusion of procalcitonin and resistin.RESULTS: There were 1101 children studied, of whom 264 had an SBI. A diagnostic model discriminated well between pneumonia and no SBI (concordance statistic 0.84, 95% confidence interval 0.78-0.90) and between other SBIs and no SBI (0.77, 95% confidence interval 0.71-0.83) on internal validation. A published model discriminated well on external validation. Model updating yielded good calibration with good performance at both high-risk (positive likelihood ratios: 6.46 and 5.13 for pneumonia and other SBI, respectively) and low-risk (negative likelihood ratios: 0.16 and 0.13, respectively) thresholds. Extending the model with procalcitonin and resistin yielded improvements in discrimination.CONCLUSIONS: Diagnostic models discriminated well between pneumonia, other SBIs, and no SBI in febrile children in the emergency department. Improvements in the classification of nonevents have the potential to reduce unnecessary hospital admissions and improve antibiotic prescribing. The benefits of this improved risk prediction should be further evaluated in robust impact studies.

KW - Journal Article

U2 - 10.1542/peds.2016-2853

DO - 10.1542/peds.2016-2853

M3 - Journal article

C2 - 28679639

JO - Pediatrics

JF - Pediatrics

SN - 0031-4005

ER -