Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Principled and automated system of systems composition using an ontological architecture
AU - Elhabbash, Abdessalam
AU - Elkhatib, Yehia
AU - Nundloll, Vatsala
AU - Sanz Marco, Vicent
AU - Blair, Gordon S.
PY - 2024/8/31
Y1 - 2024/8/31
N2 - A distributed system’s functionality must continuously evolve, especially when environmental context changes. Such required evolution imposes unbearable complexity on system development. An alternative is to make systems able to self-adapt by opportunistically composing at runtime to generate systems of systems (SoSs) that offer value-added functionality. The success of such an approach calls for abstracting the heterogeneity of systems and enabling the programmatic construction of SoSs with minimal developer intervention. We propose a general ontology-based approach to describe distributed systems, seeking to achieve abstraction and enable runtime reasoning between systems. We also propose an architecture for systems that utilizes such ontologies to enable systems to discover and ‘understand’ each other, and potentially compose, all at runtime. We detail features of the ontology and the architecture through three contrasting case studies: one on controlling multiple systems in smart home environment, another on the management of dynamic computing clusters, and a third on autonomic connection of rescue teams. We also quantitatively evaluate the scalability and validity of our approach through experiments and simulations. Our approach enables system developers to focus on high-level SoS composition without being constrained by deployment-specific implementation details. We demonstrate the feasibility of our approach to raise the level of abstraction of SoS construction through reasoned composition at runtime. Our architecture presents a strong foundation for further work due to its generality and extensibility.
AB - A distributed system’s functionality must continuously evolve, especially when environmental context changes. Such required evolution imposes unbearable complexity on system development. An alternative is to make systems able to self-adapt by opportunistically composing at runtime to generate systems of systems (SoSs) that offer value-added functionality. The success of such an approach calls for abstracting the heterogeneity of systems and enabling the programmatic construction of SoSs with minimal developer intervention. We propose a general ontology-based approach to describe distributed systems, seeking to achieve abstraction and enable runtime reasoning between systems. We also propose an architecture for systems that utilizes such ontologies to enable systems to discover and ‘understand’ each other, and potentially compose, all at runtime. We detail features of the ontology and the architecture through three contrasting case studies: one on controlling multiple systems in smart home environment, another on the management of dynamic computing clusters, and a third on autonomic connection of rescue teams. We also quantitatively evaluate the scalability and validity of our approach through experiments and simulations. Our approach enables system developers to focus on high-level SoS composition without being constrained by deployment-specific implementation details. We demonstrate the feasibility of our approach to raise the level of abstraction of SoS construction through reasoned composition at runtime. Our architecture presents a strong foundation for further work due to its generality and extensibility.
U2 - 10.1016/j.future.2024.03.034
DO - 10.1016/j.future.2024.03.034
M3 - Journal article
VL - 157
SP - 499
EP - 515
JO - Future Generation Computer Systems
JF - Future Generation Computer Systems
SN - 0167-739X
ER -