Final published version
Licence: CC BY
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Privacy-Protected Facial Biometric Verification Using Fuzzy Forest Learning
AU - Jiang, Richard
AU - Bouridane, Ahmed
AU - Crookes, Danny
AU - Celebi, M. Emre
AU - Wei, Hua-Liang
PY - 2016/8/1
Y1 - 2016/8/1
N2 - Although visual surveillance has emerged as an effective technology for public security, privacy has become an issue of great concern in the transmission and distribution of surveillance videos. For example, personal facial images should not be browsed without permission. To cope with this issue, face image scrambling has emerged as a simple solution for privacy-related applications. Consequently, online facial biometric verification needs to be carried out in the scrambled domain, thus bringing a new challenge to face classification. In this paper, we investigate face verification issues in the scrambled domain and propose a novel scheme to handle this challenge. In our proposed method, to make feature extraction from scrambled face images robust, a biased random subspace sampling scheme is applied to construct fuzzy decision trees from randomly selected features, and fuzzy forest decision using fuzzy memberships is then obtained from combining all fuzzy tree decisions. In our experiment, we first estimated the optimal parameters for the construction of the random forest and, then, applied the optimized model to the benchmark tests using three publically available face datasets. The experimental results validated that our proposed scheme can robustly cope with the challenging tests in the scrambled domain and achieved an improved accuracy over all tests, making our method a promising candidate for the emerging privacy-related facial biometric applications.
AB - Although visual surveillance has emerged as an effective technology for public security, privacy has become an issue of great concern in the transmission and distribution of surveillance videos. For example, personal facial images should not be browsed without permission. To cope with this issue, face image scrambling has emerged as a simple solution for privacy-related applications. Consequently, online facial biometric verification needs to be carried out in the scrambled domain, thus bringing a new challenge to face classification. In this paper, we investigate face verification issues in the scrambled domain and propose a novel scheme to handle this challenge. In our proposed method, to make feature extraction from scrambled face images robust, a biased random subspace sampling scheme is applied to construct fuzzy decision trees from randomly selected features, and fuzzy forest decision using fuzzy memberships is then obtained from combining all fuzzy tree decisions. In our experiment, we first estimated the optimal parameters for the construction of the random forest and, then, applied the optimized model to the benchmark tests using three publically available face datasets. The experimental results validated that our proposed scheme can robustly cope with the challenging tests in the scrambled domain and achieved an improved accuracy over all tests, making our method a promising candidate for the emerging privacy-related facial biometric applications.
KW - Chaotic pattern
KW - ensemble learning
KW - face scrambling
KW - facial biometrics
KW - fuzzy random forest
KW - privacy
U2 - 10.1109/TFUZZ.2015.2486803
DO - 10.1109/TFUZZ.2015.2486803
M3 - Journal article
VL - 24
SP - 779
EP - 790
JO - IEEE Transactions on Fuzzy Systems
JF - IEEE Transactions on Fuzzy Systems
SN - 1063-6706
IS - 4
ER -