We propose a new probabilistic graph kernel. It is defined by the set of frequent subtrees generated from a small random sample of spanning trees of the transaction graphs. In contrast to the ordinary frequent subgraph kernel it can be computed efficiently for any arbitrary graphs. Due to its probabilistic nature, the embedding function corresponding to our graph kernel is not always correct. Our empirical results on artificial and real-world chemical datasets, however, demonstrate that the graph kernel we propose is much faster than other frequent pattern based graph kernels, with only marginal loss in predictive accuracy.
DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.