Home > Research > Publications & Outputs > Producing Useful Chemicals Using a Nuclear Reactor

Text available via DOI:

View graph of relations

Producing Useful Chemicals Using a Nuclear Reactor

Research output: Contribution to conference - Without ISBN/ISSN Conference paperpeer-review

Published

Standard

Producing Useful Chemicals Using a Nuclear Reactor. / Plant, Arran; Najdanovic, Vesna; Joyce, Malcolm et al.

2020. Paper presented at International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), Portoroz, Slovenia.

Research output: Contribution to conference - Without ISBN/ISSN Conference paperpeer-review

Harvard

Plant, A, Najdanovic, V, Joyce, M, Jazbec, A & Snoj, L 2020, 'Producing Useful Chemicals Using a Nuclear Reactor', Paper presented at International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), Portoroz, Slovenia, 17/06/19 - 21/06/19. https://doi.org/10.1051/epjconf/202022509003

APA

Plant, A., Najdanovic, V., Joyce, M., Jazbec, A., & Snoj, L. (2020). Producing Useful Chemicals Using a Nuclear Reactor. Paper presented at International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), Portoroz, Slovenia. https://doi.org/10.1051/epjconf/202022509003

Vancouver

Plant A, Najdanovic V, Joyce M, Jazbec A, Snoj L. Producing Useful Chemicals Using a Nuclear Reactor. 2020. Paper presented at International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), Portoroz, Slovenia. doi: https://doi.org/10.1051/epjconf/202022509003

Author

Plant, Arran ; Najdanovic, Vesna ; Joyce, Malcolm et al. / Producing Useful Chemicals Using a Nuclear Reactor. Paper presented at International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), Portoroz, Slovenia.

Bibtex

@conference{603cea317f5f424094d2c23fe09ff2a0,
title = "Producing Useful Chemicals Using a Nuclear Reactor",
abstract = "In this paper, the irradiation of glycerol and ethylene glycol by either mixed (neutron-γ) or γ-only (γ) fields at the TRIGA reactor of the Jo{\v z}ef Stefan Institute is described. This is highly relevant to future applications of fission reactor systems to produce useful feedstock derivatives from organic waste, beyond the production of heat and power.Samples of glycerol and ethyl glycol have been exposed to neutron-gamma radiation with fast neutron fluxes ranging from 7.7×1010 to 3×1012 cm−2s−1 and gamma-only irradiation at maximum dose-rates of 492 and 10 kGy hr−1, respectively. A study of the dependence of product yield versus absorbed dose has been conducted, for total dose ranges of 1 to 100 kGy. The products of these exposures have been identified through Gas Chromatography – Mass Spectrometry (GC-MS) techniques.Analysis comparing neutron-gamma irradiated samples of ethylene glycol and glycerol with gamma-irradiated samples shows no detectable qualitative difference between either irradiation type. Although, additional radiolysis products were detected when compared with available literature; ethyl acetate from ethylene glycol and solketal from glycerol. Quantitatively, neutron-gamma irradiation seems to be less effective at producing acetaldehyde from ethylene glycol, compared with gamma-only which can be explained through neutron moderation and consequent heating effects due to the borosilicate vials.",
keywords = "radiolysis, nuclear, gas chromatography-mass spectrometry, Organic chemicals, chemical engineering",
author = "Arran Plant and Vesna Najdanovic and Malcolm Joyce and An{\v z}e Jazbec and Luka Snoj",
note = "{\textcopyright} The Authors, published by EDP Sciences, 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.; International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA) ; Conference date: 17-06-2019 Through 21-06-2019",
year = "2020",
month = jan,
day = "20",
doi = "https://doi.org/10.1051/epjconf/202022509003",
language = "English",
url = "http://www.animma.com/",

}

RIS

TY - CONF

T1 - Producing Useful Chemicals Using a Nuclear Reactor

AU - Plant, Arran

AU - Najdanovic, Vesna

AU - Joyce, Malcolm

AU - Jazbec, Anže

AU - Snoj, Luka

N1 - © The Authors, published by EDP Sciences, 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

PY - 2020/1/20

Y1 - 2020/1/20

N2 - In this paper, the irradiation of glycerol and ethylene glycol by either mixed (neutron-γ) or γ-only (γ) fields at the TRIGA reactor of the Jožef Stefan Institute is described. This is highly relevant to future applications of fission reactor systems to produce useful feedstock derivatives from organic waste, beyond the production of heat and power.Samples of glycerol and ethyl glycol have been exposed to neutron-gamma radiation with fast neutron fluxes ranging from 7.7×1010 to 3×1012 cm−2s−1 and gamma-only irradiation at maximum dose-rates of 492 and 10 kGy hr−1, respectively. A study of the dependence of product yield versus absorbed dose has been conducted, for total dose ranges of 1 to 100 kGy. The products of these exposures have been identified through Gas Chromatography – Mass Spectrometry (GC-MS) techniques.Analysis comparing neutron-gamma irradiated samples of ethylene glycol and glycerol with gamma-irradiated samples shows no detectable qualitative difference between either irradiation type. Although, additional radiolysis products were detected when compared with available literature; ethyl acetate from ethylene glycol and solketal from glycerol. Quantitatively, neutron-gamma irradiation seems to be less effective at producing acetaldehyde from ethylene glycol, compared with gamma-only which can be explained through neutron moderation and consequent heating effects due to the borosilicate vials.

AB - In this paper, the irradiation of glycerol and ethylene glycol by either mixed (neutron-γ) or γ-only (γ) fields at the TRIGA reactor of the Jožef Stefan Institute is described. This is highly relevant to future applications of fission reactor systems to produce useful feedstock derivatives from organic waste, beyond the production of heat and power.Samples of glycerol and ethyl glycol have been exposed to neutron-gamma radiation with fast neutron fluxes ranging from 7.7×1010 to 3×1012 cm−2s−1 and gamma-only irradiation at maximum dose-rates of 492 and 10 kGy hr−1, respectively. A study of the dependence of product yield versus absorbed dose has been conducted, for total dose ranges of 1 to 100 kGy. The products of these exposures have been identified through Gas Chromatography – Mass Spectrometry (GC-MS) techniques.Analysis comparing neutron-gamma irradiated samples of ethylene glycol and glycerol with gamma-irradiated samples shows no detectable qualitative difference between either irradiation type. Although, additional radiolysis products were detected when compared with available literature; ethyl acetate from ethylene glycol and solketal from glycerol. Quantitatively, neutron-gamma irradiation seems to be less effective at producing acetaldehyde from ethylene glycol, compared with gamma-only which can be explained through neutron moderation and consequent heating effects due to the borosilicate vials.

KW - radiolysis

KW - nuclear

KW - gas chromatography-mass spectrometry

KW - Organic chemicals

KW - chemical engineering

U2 - https://doi.org/10.1051/epjconf/202022509003

DO - https://doi.org/10.1051/epjconf/202022509003

M3 - Conference paper

T2 - International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA)

Y2 - 17 June 2019 through 21 June 2019

ER -