Home > Research > Publications & Outputs > Proton Bunch Self-Modulation in Plasma with Den...

Links

Text available via DOI:

View graph of relations

Proton Bunch Self-Modulation in Plasma with Density Gradient

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Proton Bunch Self-Modulation in Plasma with Density Gradient. / AWAKE Collaboration.
In: Physical review letters, Vol. 125, No. 26, 264801, 31.12.2020.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

AWAKE Collaboration 2020, 'Proton Bunch Self-Modulation in Plasma with Density Gradient', Physical review letters, vol. 125, no. 26, 264801. https://doi.org/10.1103/PhysRevLett.125.264801

APA

AWAKE Collaboration (2020). Proton Bunch Self-Modulation in Plasma with Density Gradient. Physical review letters, 125(26), Article 264801. https://doi.org/10.1103/PhysRevLett.125.264801

Vancouver

AWAKE Collaboration. Proton Bunch Self-Modulation in Plasma with Density Gradient. Physical review letters. 2020 Dec 31;125(26):264801. Epub 2020 Dec 28. doi: 10.1103/PhysRevLett.125.264801

Author

AWAKE Collaboration. / Proton Bunch Self-Modulation in Plasma with Density Gradient. In: Physical review letters. 2020 ; Vol. 125, No. 26.

Bibtex

@article{435de927e3a8413cb4d97ab7570f425b,
title = "Proton Bunch Self-Modulation in Plasma with Density Gradient",
abstract = "We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies in the modulation power spectrum. Results are consistent with changes in wakefields' phase velocity due to plasma density gradients adding to the slow wakefields' phase velocity during self-modulation growth predicted by linear theory. ",
keywords = "Beam plasma interactions, Germanium compounds, Phase velocity, Plasma density, Density gradients, Linear plasma density, Linear theory, Microbunches, Modulation frequencies, Modulation power, Plasma density gradient, Self modulation, Frequency modulation",
author = "{AWAKE Collaboration} and F. Braunm{\"u}ller and T. Nechaeva and E. Adli and R. Agnello and M. Aladi and Y. Andrebe and O. Apsimon and R. Apsimon and A.-M. Bachmann and M.A. Baistrukov and F. Batsch and M. Bergamaschi and P. Blanchard and P.N. Burrows and B. Buttensch{\"o}n and A. Caldwell and J. Chappell and E. Chevallay and M. Chung and D.A. Cooke and H. Damerau and C. Davut and G. Demeter and L.H. Deubner and A. Dexter and G.P. Djotyan and S. Doebert and J. Farmer and A. Fasoli and V.N. Fedosseev and R. Fiorito and R.A. Fonseca and F. Friebel and I. Furno and L. Garolfi and S. Gessner and B. Goddard and I. Gorgisyan and A.A. Gorn and E. Granados and M. Granetzny and O. Grulke and E. Gschwendtner and V. Hafych and A. Hartin and A. Helm and J.R. Henderson and A. Howling and B. Williamson and B. Woolley",
year = "2020",
month = dec,
day = "31",
doi = "10.1103/PhysRevLett.125.264801",
language = "English",
volume = "125",
journal = "Physical review letters",
issn = "1079-7114",
publisher = "American Physical Society",
number = "26",

}

RIS

TY - JOUR

T1 - Proton Bunch Self-Modulation in Plasma with Density Gradient

AU - AWAKE Collaboration

AU - Braunmüller, F.

AU - Nechaeva, T.

AU - Adli, E.

AU - Agnello, R.

AU - Aladi, M.

AU - Andrebe, Y.

AU - Apsimon, O.

AU - Apsimon, R.

AU - Bachmann, A.-M.

AU - Baistrukov, M.A.

AU - Batsch, F.

AU - Bergamaschi, M.

AU - Blanchard, P.

AU - Burrows, P.N.

AU - Buttenschön, B.

AU - Caldwell, A.

AU - Chappell, J.

AU - Chevallay, E.

AU - Chung, M.

AU - Cooke, D.A.

AU - Damerau, H.

AU - Davut, C.

AU - Demeter, G.

AU - Deubner, L.H.

AU - Dexter, A.

AU - Djotyan, G.P.

AU - Doebert, S.

AU - Farmer, J.

AU - Fasoli, A.

AU - Fedosseev, V.N.

AU - Fiorito, R.

AU - Fonseca, R.A.

AU - Friebel, F.

AU - Furno, I.

AU - Garolfi, L.

AU - Gessner, S.

AU - Goddard, B.

AU - Gorgisyan, I.

AU - Gorn, A.A.

AU - Granados, E.

AU - Granetzny, M.

AU - Grulke, O.

AU - Gschwendtner, E.

AU - Hafych, V.

AU - Hartin, A.

AU - Helm, A.

AU - Henderson, J.R.

AU - Howling, A.

AU - Williamson, B.

AU - Woolley, B.

PY - 2020/12/31

Y1 - 2020/12/31

N2 - We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies in the modulation power spectrum. Results are consistent with changes in wakefields' phase velocity due to plasma density gradients adding to the slow wakefields' phase velocity during self-modulation growth predicted by linear theory.

AB - We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies in the modulation power spectrum. Results are consistent with changes in wakefields' phase velocity due to plasma density gradients adding to the slow wakefields' phase velocity during self-modulation growth predicted by linear theory.

KW - Beam plasma interactions

KW - Germanium compounds

KW - Phase velocity

KW - Plasma density

KW - Density gradients

KW - Linear plasma density

KW - Linear theory

KW - Microbunches

KW - Modulation frequencies

KW - Modulation power

KW - Plasma density gradient

KW - Self modulation

KW - Frequency modulation

U2 - 10.1103/PhysRevLett.125.264801

DO - 10.1103/PhysRevLett.125.264801

M3 - Journal article

VL - 125

JO - Physical review letters

JF - Physical review letters

SN - 1079-7114

IS - 26

M1 - 264801

ER -