Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Pupil-canthi-ratio
T2 - a calibration-free method for tracking horizontal gaze direction
AU - Zhang, Yanxia
AU - Bulling, Andreas
AU - Gellersen, Hans
PY - 2014
Y1 - 2014
N2 - Eye tracking is compelling for hands-free interaction with pervasive displays. However, most existing eye tracking systems require specialised hardware and explicit calibrations of equipment and individual users, which inhibit their widespread adoption. In this work, we present a light-weight and calibration-free gaze estimation method that leverages only an off-the-shelf camera to track users' gaze horizontally. We introduce pupil-canthi-ratio (PCR), a novel measure for estimating gaze directions. By using the displacement vector between the inner eye corner and the pupil centre of an eye, PCR is calculated as the ratio of the displacement vectors from both eyes. We establish a mapping between PCR to gaze direction by Gaussian process regression, which inherently infers averted horizontal gaze directions of users. We present a study to identify the characteristics of PCR. The results show that PCR achieved an average accuracy of 3.9 degrees across different people. Finally, we show examples of real-time applications of PCR that allow users to interact with a display by moving only their eyes.
AB - Eye tracking is compelling for hands-free interaction with pervasive displays. However, most existing eye tracking systems require specialised hardware and explicit calibrations of equipment and individual users, which inhibit their widespread adoption. In this work, we present a light-weight and calibration-free gaze estimation method that leverages only an off-the-shelf camera to track users' gaze horizontally. We introduce pupil-canthi-ratio (PCR), a novel measure for estimating gaze directions. By using the displacement vector between the inner eye corner and the pupil centre of an eye, PCR is calculated as the ratio of the displacement vectors from both eyes. We establish a mapping between PCR to gaze direction by Gaussian process regression, which inherently infers averted horizontal gaze directions of users. We present a study to identify the characteristics of PCR. The results show that PCR achieved an average accuracy of 3.9 degrees across different people. Finally, we show examples of real-time applications of PCR that allow users to interact with a display by moving only their eyes.
KW - Gaussian regression
KW - calibration-free
KW - eye tracking
KW - gaze-based interaction
KW - pervasive displays
KW - vision-based
U2 - 10.1145/2598153.2598186
DO - 10.1145/2598153.2598186
M3 - Conference contribution/Paper
SN - 9781450327756
SP - 129
EP - 132
BT - AVI '14 Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces
PB - ACM
CY - New York
ER -