Rights statement: This is the author’s version of a work that was accepted for publication in Science of the Total Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Science of the Total Environment, 586, 2017 DOI: 10.1016/j.scitotenv.2017.02.064
Accepted author manuscript, 477 KB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Pyrogenic carbon in Australian soils. / Qi, Fangjie; Naidu, Ravi; Bolan, Nanthi S et al.
In: Science of the Total Environment, Vol. 586, 15.05.2017, p. 849-857.Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Pyrogenic carbon in Australian soils
AU - Qi, Fangjie
AU - Naidu, Ravi
AU - Bolan, Nanthi S
AU - Dong, Zhaomin
AU - Yan, Yubo
AU - Lamb, Dane
AU - Bucheli, Thomas D.
AU - Choppala, Girish
AU - Duan, Luchun
AU - Semple, Kirk T
N1 - This is the author’s version of a work that was accepted for publication in Science of the Total Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Science of the Total Environment, 586, 2017 DOI: 10.1016/j.scitotenv.2017.02.064
PY - 2017/5/15
Y1 - 2017/5/15
N2 - Pyrogenic carbon (PyC), the combustion residues of fossil fuel and biomass, is a versatile soil fraction active in biogeochemical processes. In this study, the chemo-thermal oxidation method (CTO-375) was applied to investigate the content and distribution of PyC in 30 Australian agricultural, pastoral, bushland and parkland soil with various soil types. Soils were sampled incrementally to 50 cm in 6 locations and at another 7 locations at 0–10 cm. Results showed that PyC in Australian soils typically ranged from 0.27–5.62 mg/g, with three Dermosol soils ranging within 2.58–5.62 mg/g. Soil PyC contributed 2.0–11% (N = 29) to the total organic carbon (TOC), with one Ferrosol as high as 26%. PyC was concentrated either in the top (0–10 cm) or bottom (30–50 cm) soil layers, with the highest PyC:TOC ratio in the bottom (30–50 cm) soil horizon in all soils. Principal component analysis - multiple linear regression (PCA-MLR) suggested the silt-associated organic C factor accounted for 38.5% of the variation in PyC. Our findings suggest that PyC is an important fraction of the TOC (2.0–11%, N = 18) and chemically recalcitrant organic C (ROC) obtained by chemical C fractionation method accounts for a significant proportion of soil TOC (47.3–84.9%, N = 18). This is the first study comparing these two methods, and it indicates both CTO-375 and C speciation methods can determine a fraction of recalcitrant organic C. However, estimated chemically recalcitrant organic carbon pool (ROC) was approximately an order of magnitude greater than that of thermally stable organic carbon (PyC).
AB - Pyrogenic carbon (PyC), the combustion residues of fossil fuel and biomass, is a versatile soil fraction active in biogeochemical processes. In this study, the chemo-thermal oxidation method (CTO-375) was applied to investigate the content and distribution of PyC in 30 Australian agricultural, pastoral, bushland and parkland soil with various soil types. Soils were sampled incrementally to 50 cm in 6 locations and at another 7 locations at 0–10 cm. Results showed that PyC in Australian soils typically ranged from 0.27–5.62 mg/g, with three Dermosol soils ranging within 2.58–5.62 mg/g. Soil PyC contributed 2.0–11% (N = 29) to the total organic carbon (TOC), with one Ferrosol as high as 26%. PyC was concentrated either in the top (0–10 cm) or bottom (30–50 cm) soil layers, with the highest PyC:TOC ratio in the bottom (30–50 cm) soil horizon in all soils. Principal component analysis - multiple linear regression (PCA-MLR) suggested the silt-associated organic C factor accounted for 38.5% of the variation in PyC. Our findings suggest that PyC is an important fraction of the TOC (2.0–11%, N = 18) and chemically recalcitrant organic C (ROC) obtained by chemical C fractionation method accounts for a significant proportion of soil TOC (47.3–84.9%, N = 18). This is the first study comparing these two methods, and it indicates both CTO-375 and C speciation methods can determine a fraction of recalcitrant organic C. However, estimated chemically recalcitrant organic carbon pool (ROC) was approximately an order of magnitude greater than that of thermally stable organic carbon (PyC).
KW - Soil
KW - Pyrogenic carbon (PyC)
KW - Content
KW - Distribution
KW - Soil properties
U2 - 10.1016/j.scitotenv.2017.02.064
DO - 10.1016/j.scitotenv.2017.02.064
M3 - Journal article
VL - 586
SP - 849
EP - 857
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
ER -