Home > Research > Publications & Outputs > Quantifying snow water equivalent using terrest...

Associated organisational unit

Electronic data

  • Yildiz_et_al (accepted version)

    Rights statement: This is the peer reviewed version of the following article:Yildiz, S., Akyurek, Z., & Binley, A. (2021). Quantifying snow water equivalent using terrestrial ground penetrating radar and unmanned aerial vehicle photogrammetry. Hydrological Processes, 35: e14190. doi: 10.1002/hyp.14190 which has been published in final form at https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2Fhyp.14190 This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

    Accepted author manuscript, 2.66 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Quantifying snow water equivalent using terrestrial GPR and UAV photogrammetry

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Quantifying snow water equivalent using terrestrial GPR and UAV photogrammetry. / Yildiz, Semih; Akyurek, Zuhal; Binley, Andrew.
In: Hydrological Processes, Vol. 35, No. 5, e14190, 31.05.2021.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Yildiz S, Akyurek Z, Binley A. Quantifying snow water equivalent using terrestrial GPR and UAV photogrammetry. Hydrological Processes. 2021 May 31;35(5):e14190. Epub 2021 May 20. doi: 10.1002/hyp.14190

Author

Yildiz, Semih ; Akyurek, Zuhal ; Binley, Andrew. / Quantifying snow water equivalent using terrestrial GPR and UAV photogrammetry. In: Hydrological Processes. 2021 ; Vol. 35, No. 5.

Bibtex

@article{c1acac680b9e4cffa8b23996921c4c0e,
title = "Quantifying snow water equivalent using terrestrial GPR and UAV photogrammetry",
abstract = "This study demonstrates the potential value of a combined UAV Photogrammetry and ground penetrating radar (GPR) approach to map snow water equivalent (SWE) over large scales. SWE estimation requires two different physical parameters (snow depth and density), which are currently difficult to measure with the spatial and temporal resolution desired for basin-wide studies. UAV photogrammetry can provide very high-resolution spatially continuous snow depths (SD) at the basin scale, but does not measure snow densities. GPR allows nondestructive quantitative snow investigation if the radar velocity is known. Using photogrammetric snow depths and GPR two-way travel times (TWT) of reflections at the snow-ground interface, radar velocities in snowpack can be determined. Snow density (RSN) is then estimated from the radar propagation velocity (which is related to electrical permittivity of snow) via empirical formulas. A Phantom-4 Pro UAV and a MALA GX450 HDR model GPR mounted on a ski mobile were used to determine snow parameters. A snow-free digital surface model (DSM) was obtained from the photogrammetric survey conducted in September 2017. Then, another survey in synchronization with a GPR survey was conducted in February 2019 whilst the snowpack was approximately at its maximum thickness. Spatially continuous snow depths were calculated by subtracting the snow-free DSM from the snow-covered DSM. Radar velocities in the snowpack along GPR survey lines were computed by using UAV-based snow depths and GPR reflections to obtain snow densities and SWEs. The root mean square error of the obtained SWEs (384 mm average) is 63 mm, indicating good agreement with independent SWE observations and the error lies within acceptable uncertainty limits. ",
keywords = "Digital Surface Model, Digital Terrain Model, Ground Penetrating Radar, Photogrammetry, Snow Density, Snow Tube, Snow Water Equivalent, Unmanned Aerial Vehicle",
author = "Semih Yildiz and Zuhal Akyurek and Andrew Binley",
note = "This is the peer reviewed version of the following article:Yildiz, S., Akyurek, Z., & Binley, A. (2021). Quantifying snow water equivalent using terrestrial ground penetrating radar and unmanned aerial vehicle photogrammetry. Hydrological Processes, 35: e14190. doi: 10.1002/hyp.14190 which has been published in final form at https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2Fhyp.14190 This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving. ",
year = "2021",
month = may,
day = "31",
doi = "10.1002/hyp.14190",
language = "English",
volume = "35",
journal = "Hydrological Processes",
issn = "0885-6087",
publisher = "John Wiley and Sons Ltd",
number = "5",

}

RIS

TY - JOUR

T1 - Quantifying snow water equivalent using terrestrial GPR and UAV photogrammetry

AU - Yildiz, Semih

AU - Akyurek, Zuhal

AU - Binley, Andrew

N1 - This is the peer reviewed version of the following article:Yildiz, S., Akyurek, Z., & Binley, A. (2021). Quantifying snow water equivalent using terrestrial ground penetrating radar and unmanned aerial vehicle photogrammetry. Hydrological Processes, 35: e14190. doi: 10.1002/hyp.14190 which has been published in final form at https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2Fhyp.14190 This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

PY - 2021/5/31

Y1 - 2021/5/31

N2 - This study demonstrates the potential value of a combined UAV Photogrammetry and ground penetrating radar (GPR) approach to map snow water equivalent (SWE) over large scales. SWE estimation requires two different physical parameters (snow depth and density), which are currently difficult to measure with the spatial and temporal resolution desired for basin-wide studies. UAV photogrammetry can provide very high-resolution spatially continuous snow depths (SD) at the basin scale, but does not measure snow densities. GPR allows nondestructive quantitative snow investigation if the radar velocity is known. Using photogrammetric snow depths and GPR two-way travel times (TWT) of reflections at the snow-ground interface, radar velocities in snowpack can be determined. Snow density (RSN) is then estimated from the radar propagation velocity (which is related to electrical permittivity of snow) via empirical formulas. A Phantom-4 Pro UAV and a MALA GX450 HDR model GPR mounted on a ski mobile were used to determine snow parameters. A snow-free digital surface model (DSM) was obtained from the photogrammetric survey conducted in September 2017. Then, another survey in synchronization with a GPR survey was conducted in February 2019 whilst the snowpack was approximately at its maximum thickness. Spatially continuous snow depths were calculated by subtracting the snow-free DSM from the snow-covered DSM. Radar velocities in the snowpack along GPR survey lines were computed by using UAV-based snow depths and GPR reflections to obtain snow densities and SWEs. The root mean square error of the obtained SWEs (384 mm average) is 63 mm, indicating good agreement with independent SWE observations and the error lies within acceptable uncertainty limits.

AB - This study demonstrates the potential value of a combined UAV Photogrammetry and ground penetrating radar (GPR) approach to map snow water equivalent (SWE) over large scales. SWE estimation requires two different physical parameters (snow depth and density), which are currently difficult to measure with the spatial and temporal resolution desired for basin-wide studies. UAV photogrammetry can provide very high-resolution spatially continuous snow depths (SD) at the basin scale, but does not measure snow densities. GPR allows nondestructive quantitative snow investigation if the radar velocity is known. Using photogrammetric snow depths and GPR two-way travel times (TWT) of reflections at the snow-ground interface, radar velocities in snowpack can be determined. Snow density (RSN) is then estimated from the radar propagation velocity (which is related to electrical permittivity of snow) via empirical formulas. A Phantom-4 Pro UAV and a MALA GX450 HDR model GPR mounted on a ski mobile were used to determine snow parameters. A snow-free digital surface model (DSM) was obtained from the photogrammetric survey conducted in September 2017. Then, another survey in synchronization with a GPR survey was conducted in February 2019 whilst the snowpack was approximately at its maximum thickness. Spatially continuous snow depths were calculated by subtracting the snow-free DSM from the snow-covered DSM. Radar velocities in the snowpack along GPR survey lines were computed by using UAV-based snow depths and GPR reflections to obtain snow densities and SWEs. The root mean square error of the obtained SWEs (384 mm average) is 63 mm, indicating good agreement with independent SWE observations and the error lies within acceptable uncertainty limits.

KW - Digital Surface Model

KW - Digital Terrain Model

KW - Ground Penetrating Radar

KW - Photogrammetry

KW - Snow Density

KW - Snow Tube

KW - Snow Water Equivalent

KW - Unmanned Aerial Vehicle

U2 - 10.1002/hyp.14190

DO - 10.1002/hyp.14190

M3 - Journal article

VL - 35

JO - Hydrological Processes

JF - Hydrological Processes

SN - 0885-6087

IS - 5

M1 - e14190

ER -