Final published version
Licence: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Quantifying water in spent fuel assemblies with neutrons
T2 - A simulation-based approach
AU - Binnersley, C.
AU - Ashley, S.F.
AU - Chard, P.
AU - Lansdell, A.
AU - O'Brien, G.
AU - Shaughnessy, P.
AU - Joyce, M.J.
PY - 2022/3/31
Y1 - 2022/3/31
N2 - A simulation-based study concerning three non-destructive approaches by which water in spent nuclear fuel assemblies might be quantified with neutrons is described. Three fuel types have been considered: thirty-six spent Advanced Gas-cooled Reactor (AGR) fuel pins contained in a stainless-steel can; a prototype fast reactor (PFR) spent fuel assembly and a light water reactor (LWR) spent fuel assembly – with the PFR and LWR assemblies containing mixed oxide fuels. The three approaches are investigated with MCNP5 based on neutron interrogation: fast neutron detection of the perturbed fast neutron flux and two approaches based on the 2.223 MeV γ-ray photon emission resulting from the 1H(n,γ)2H capture reaction, stimulated with moderated and unmoderated neutrons. For each of these approaches the following perspectives have been considered: neutron transmission, the influence of radiation emitted by the associated spent fuel inventory, and the dependencies on water quantity and location. The moderated γ-ray assay technique is observed to return the most significant distinction between scenarios with and without water in the fuel assemblies, notwithstanding the need for efficiency response functions to be overlaid on the neutron models as part of the interpretation of the MCNP model results. Water present in all of the spent fuels considered is observed to perturb the incident neutron flux to a degree significant within the simulation uncertainties. The AGR and PFR cases are not undermined by the intrinsic neutron field from the fuel; whereas for the LWR-MOX case, the simulations suggest that this will limit its potential. Successful detection of water quantities down to 10 g is anticipated for AGR, whereas reduced mass sensitivity is forecast for PFR and LWR-MOX, where it is assumed that the water will be more dispersed. Water located in fewer locations is observed to be harder to discern, suggesting that small, localised quantities of water could pose a challenge for these techniques.
AB - A simulation-based study concerning three non-destructive approaches by which water in spent nuclear fuel assemblies might be quantified with neutrons is described. Three fuel types have been considered: thirty-six spent Advanced Gas-cooled Reactor (AGR) fuel pins contained in a stainless-steel can; a prototype fast reactor (PFR) spent fuel assembly and a light water reactor (LWR) spent fuel assembly – with the PFR and LWR assemblies containing mixed oxide fuels. The three approaches are investigated with MCNP5 based on neutron interrogation: fast neutron detection of the perturbed fast neutron flux and two approaches based on the 2.223 MeV γ-ray photon emission resulting from the 1H(n,γ)2H capture reaction, stimulated with moderated and unmoderated neutrons. For each of these approaches the following perspectives have been considered: neutron transmission, the influence of radiation emitted by the associated spent fuel inventory, and the dependencies on water quantity and location. The moderated γ-ray assay technique is observed to return the most significant distinction between scenarios with and without water in the fuel assemblies, notwithstanding the need for efficiency response functions to be overlaid on the neutron models as part of the interpretation of the MCNP model results. Water present in all of the spent fuels considered is observed to perturb the incident neutron flux to a degree significant within the simulation uncertainties. The AGR and PFR cases are not undermined by the intrinsic neutron field from the fuel; whereas for the LWR-MOX case, the simulations suggest that this will limit its potential. Successful detection of water quantities down to 10 g is anticipated for AGR, whereas reduced mass sensitivity is forecast for PFR and LWR-MOX, where it is assumed that the water will be more dispersed. Water located in fewer locations is observed to be harder to discern, suggesting that small, localised quantities of water could pose a challenge for these techniques.
KW - Detection
KW - MCNP
KW - Neutrons
KW - Spent nuclear fuel
KW - Water ingress
KW - Gamma rays
KW - Gas cooled reactors
KW - Neutron flux
KW - Spent fuels
KW - Fast-light
KW - Non destructive
KW - Prototype fast reactor
KW - Simulation based approaches
KW - Spent fuel assemblies
KW - Spent nuclear fuels
KW - Water quantities
KW - Light water reactors
U2 - 10.1016/j.pnucene.2021.104110
DO - 10.1016/j.pnucene.2021.104110
M3 - Journal article
VL - 145
JO - Progress in Nuclear Energy
JF - Progress in Nuclear Energy
SN - 0149-1970
M1 - 104110
ER -