Home > Research > Publications & Outputs > Quantitative analysis on the mechanism of Cd2+ ...

Electronic data

  • Yin_HAZMAT_MgCl2-biochar_preprint

    Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Hazardous Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Hazardous Materials, 420, 2021 DOI: 10.1016/j.jhazmat.2021.126487

    Accepted author manuscript, 1.89 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Quantitative analysis on the mechanism of Cd2+ removal by MgCl2-modified biochar in aqueous solutions

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • G. Yin
  • L. Tao
  • X. Chen
  • N.S. Bolan
  • B. Sarkar
  • Q. Lin
  • H. Wang
Close
Article number126487
<mark>Journal publication date</mark>15/10/2021
<mark>Journal</mark>Journal of Hazardous Materials
Volume420
Number of pages10
Publication StatusPublished
Early online date24/06/21
<mark>Original language</mark>English

Abstract

In this study, a pristine biochar (BC) and MgCl2-modified biochar (MBC) were prepared using Pennisetum sp. straw for removing Cd2+ from aqueous solutions. Scanning electron microscope (SEM) imaging combined with energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), as well as the surface area and porosity analyses were used to reveal the physico-chemical characteristics of the pristine and modified adsorbents. Results suggested that MgCl2 impregnation during the synthesis had enhanced the specific surface area and pore volume of the biochar. Batch adsorption experiments indicated that the Cd2+ adsorption data of MBC fitted the Langmuir isothermal and pseudo-second order kinetic models, indicating a chemical adsorption was undergoing in the system. The maximum adsorption capacity of Cd2+ on MBC was 763.12 mg/g, which was 11.15 times higher than that of the pristine BC. The Cd2+ removal by MBC was mainly attributed to the mechanisms in an order: Cd(OH)2 precipitation (73.43%) > ion exchange (22.67%) > Cd2+-π interaction (3.88%), with negligible contributions from functional group complexation, electrostatic attraction and physical adsorption. The MBC could thus be used as a promising adsorbent for Cd2+ removal from aqueous solutions. 

Bibliographic note

This is the author’s version of a work that was accepted for publication in Journal of Hazardous Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Hazardous Materials, 420, 2021 DOI: 10.1016/j.jhazmat.2021.126487