Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - RALBA: a computation-aware load balancing scheduler for cloud computing
AU - Hussain, Altaf
AU - Aleem, Muhammad
AU - Khan, Abid
AU - Iqbal, Muhammad Azhar
AU - Islam, Muhammad Arshad
PY - 2018/9/30
Y1 - 2018/9/30
N2 - Cloud computing serves as a platform for remote users to utilize the heterogeneous resources in data-centers to compute High-Performance Computing jobs. The physical resources are virtualized in Cloud to entertain user services employing Virtual Machines (VMs). Job scheduling is deemed as a quintessential part of Cloud and efficient utilization of VMs by Cloud Service Providers demands an optimal job scheduling heuristic. An ideal scheduling heuristic should be efficient, fair, and starvation-free to produce a reduced makespan with improved resource utilization. However, static heuristics often lead to inefficient and poor resource utilization in the Cloud. An idle and underutilized host machine in Cloud still consumes up to 70% of the energy required by an active machine (Ray, in Indian J Comput Sci Eng 1(4):333–339, 2012). Consequently, it demands a load-balanced distribution of workload to achieve optimal resource utilization in Cloud. Existing Cloud scheduling heuristics such as Min–Min, Max–Min, and Sufferage distribute workloads among VMs based on minimum job completion time that ultimately causes a load imbalance. In this paper, a novel Resource-Aware Load Balancing Algorithm (RALBA) is presented to ensure a balanced distribution of workload based on computation capabilities of VMs. The RABLA framework comprises of two phases: (1) scheduling based on computing capabilities of VMs, and (2) the VM with earliest finish time is selected for jobs mapping. The outcomes of the RALBA have revealed that it provides substantial improvement against traditional heuristics regarding makespan, resource utilization, and throughput.
AB - Cloud computing serves as a platform for remote users to utilize the heterogeneous resources in data-centers to compute High-Performance Computing jobs. The physical resources are virtualized in Cloud to entertain user services employing Virtual Machines (VMs). Job scheduling is deemed as a quintessential part of Cloud and efficient utilization of VMs by Cloud Service Providers demands an optimal job scheduling heuristic. An ideal scheduling heuristic should be efficient, fair, and starvation-free to produce a reduced makespan with improved resource utilization. However, static heuristics often lead to inefficient and poor resource utilization in the Cloud. An idle and underutilized host machine in Cloud still consumes up to 70% of the energy required by an active machine (Ray, in Indian J Comput Sci Eng 1(4):333–339, 2012). Consequently, it demands a load-balanced distribution of workload to achieve optimal resource utilization in Cloud. Existing Cloud scheduling heuristics such as Min–Min, Max–Min, and Sufferage distribute workloads among VMs based on minimum job completion time that ultimately causes a load imbalance. In this paper, a novel Resource-Aware Load Balancing Algorithm (RALBA) is presented to ensure a balanced distribution of workload based on computation capabilities of VMs. The RABLA framework comprises of two phases: (1) scheduling based on computing capabilities of VMs, and (2) the VM with earliest finish time is selected for jobs mapping. The outcomes of the RALBA have revealed that it provides substantial improvement against traditional heuristics regarding makespan, resource utilization, and throughput.
KW - Cloud scheduling
KW - Load balancing
KW - Computation-aware scheduling
KW - Resource utilization
KW - Cloud simulation
U2 - 10.1007/s10586-018-2414-6
DO - 10.1007/s10586-018-2414-6
M3 - Journal article
VL - 21
SP - 1667
EP - 1680
JO - Cluster Computing
JF - Cluster Computing
SN - 1573-7543
ER -