Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Real Time Action Recognition Using Histograms of Depth Gradients and Random Decision Forests
AU - Rahmani, Hossein
AU - Mahmood, Arif
AU - Huynh, Du Q.
AU - Mian, Ajmal
PY - 2014
Y1 - 2014
N2 - We propose an algorithm which combines the discriminative information from depth images as well as from 3D joint positions to achieve high action recognition accuracy. To avoid the suppression of subtle discriminative information and also to handle local occlusions, we compute a vector of many independent local features. Each feature encodes spatiotemporal variations of depth and depth gradients at a specific space-time location in the action volume. Moreover, we encode the dominant skeleton movements by computing a local 3D joint position difference histogram. For each joint, we compute a 3D space-time motion volume which we use as an importance indicator and incorporate in the feature vector for improved action discrimination. To retain only the discriminant features, we train a random decision forest (RDF). The proposed algorithm is evaluated on three standard datasets and compared with nine state-of-the-art algorithms. Experimental results show that, on the average, the proposed algorithm outperform all other algorithms in accuracy and have a processing speed of over 112 frames/second.
AB - We propose an algorithm which combines the discriminative information from depth images as well as from 3D joint positions to achieve high action recognition accuracy. To avoid the suppression of subtle discriminative information and also to handle local occlusions, we compute a vector of many independent local features. Each feature encodes spatiotemporal variations of depth and depth gradients at a specific space-time location in the action volume. Moreover, we encode the dominant skeleton movements by computing a local 3D joint position difference histogram. For each joint, we compute a 3D space-time motion volume which we use as an importance indicator and incorporate in the feature vector for improved action discrimination. To retain only the discriminant features, we train a random decision forest (RDF). The proposed algorithm is evaluated on three standard datasets and compared with nine state-of-the-art algorithms. Experimental results show that, on the average, the proposed algorithm outperform all other algorithms in accuracy and have a processing speed of over 112 frames/second.
U2 - 10.1109/WACV.2014.6836044
DO - 10.1109/WACV.2014.6836044
M3 - Conference contribution/Paper
SP - 626
EP - 633
BT - IEEE Winter Conference on Applications of Computer Vision (WACV)
PB - IEEE
ER -