Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Recurrent wildfires alter forest structure and community composition of terra firme Amazonian forests
AU - Pereira, Cassio Alves
AU - Barlow, Jos
AU - Tabarelli, Marcelo
AU - Giles, Andre Luiz
AU - Ferreira, Amanda Estefania de Melo
AU - Vieira, Ima Célia Guimarães
PY - 2024/11/1
Y1 - 2024/11/1
N2 - Wildfires associated with land-use and climate change have considered a key driver to the Amazon forest collapse. However, achieving a detailed understanding of how human-related disturbances impact forest successional trajectories needs comprehensive information spanning forest strata. Here, we investigate the impact of recurrent wildfires on forest structure, species diversity, and composition, making a comprehensive assessment of the regenerating, understory, and canopy tree communities in a sustainable use reserve in the eastern Amazon. Plant communities were described across 16 forest stands (old-growth, burned once and twice) sampling a total of 3620 individuals and 326 tree and palm species. Wildfires affected all attributes of forest structure. Aboveground biomass decreased by 44% in forest burned once, and 71% in twice-burned forest stands. Forest canopy was the most affected strata after the second fire, with a 44%-decrease compared to unburned forest. The same pattern emerged for basal area, which decreased by an average of 27.5% after the first fire and 53.8% following the second fire event. Overall, plant communities experienced a 50%-loss of species richness after two fires, including both dominant and rare species. Plant communities also became more dissimilar as fire events accumulated, with 58%–61% increase in species dissimilarity following two fires events. As wildfires reoccured, the old-growth forests of our focal landscape were converted into a mosaic of regenerating forest stands dominated by local short-lived pioneers (i.e. low-biomass early-regenerating forest stands) and a few tree species less sensitive to fire. Our findings highlight the urgent need to secure a resilient future for Amazonian forests with actions needed to support local livelihoods whilst reducing the prevalence of ignitions sources and allowing forest recovery.
AB - Wildfires associated with land-use and climate change have considered a key driver to the Amazon forest collapse. However, achieving a detailed understanding of how human-related disturbances impact forest successional trajectories needs comprehensive information spanning forest strata. Here, we investigate the impact of recurrent wildfires on forest structure, species diversity, and composition, making a comprehensive assessment of the regenerating, understory, and canopy tree communities in a sustainable use reserve in the eastern Amazon. Plant communities were described across 16 forest stands (old-growth, burned once and twice) sampling a total of 3620 individuals and 326 tree and palm species. Wildfires affected all attributes of forest structure. Aboveground biomass decreased by 44% in forest burned once, and 71% in twice-burned forest stands. Forest canopy was the most affected strata after the second fire, with a 44%-decrease compared to unburned forest. The same pattern emerged for basal area, which decreased by an average of 27.5% after the first fire and 53.8% following the second fire event. Overall, plant communities experienced a 50%-loss of species richness after two fires, including both dominant and rare species. Plant communities also became more dissimilar as fire events accumulated, with 58%–61% increase in species dissimilarity following two fires events. As wildfires reoccured, the old-growth forests of our focal landscape were converted into a mosaic of regenerating forest stands dominated by local short-lived pioneers (i.e. low-biomass early-regenerating forest stands) and a few tree species less sensitive to fire. Our findings highlight the urgent need to secure a resilient future for Amazonian forests with actions needed to support local livelihoods whilst reducing the prevalence of ignitions sources and allowing forest recovery.
KW - forest degradation
KW - wildfires
KW - climate change
KW - ecosystem services
KW - biomass
KW - species richness
KW - floristic composition
U2 - 10.1088/1748-9326/ad77e6
DO - 10.1088/1748-9326/ad77e6
M3 - Journal article
VL - 19
JO - Environmental Research Letters
JF - Environmental Research Letters
SN - 1748-9326
IS - 11
M1 - 114051
ER -