Home > Research > Publications & Outputs > Reduced order emulation of distributed hydrauli...

Associated organisational unit

Text available via DOI:

View graph of relations

Reduced order emulation of distributed hydraulic simulation models

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paperpeer-review

Published
Close
Publication date1/12/2009
Host publication15th Symposium on System Identification, SYSID 2009 - Preprints
Pages1762-1767
Number of pages6
Volume15
EditionPART 1
<mark>Original language</mark>English
Event15th IFAC Symposium on System Identification, SYSID 2009 - Saint-Malo, France
Duration: 6/07/20098/07/2009

Conference

Conference15th IFAC Symposium on System Identification, SYSID 2009
Country/TerritoryFrance
CitySaint-Malo
Period6/07/098/07/09

Conference

Conference15th IFAC Symposium on System Identification, SYSID 2009
Country/TerritoryFrance
CitySaint-Malo
Period6/07/098/07/09

Abstract

Water level predictions made with hydraulic models are uncertain and evaluating this uncertainty using Monte Carlo ensemble prediction is computationally very expensive. In this paper we show how a reduced order Dynamic Model Emulator (DME) can be used to reproduce, with high accuracy, the outputs of a large and complex 1-D hydraulic model (HEC- RAS) at specified cross-sections along the Montford to Buildwas reach of the River Severn in the U.K, together with estimates of uncertainty in the predictions. This emulation model is obtained by the application of Dominant Mode Analysis (DMA), involving the identification and estimation of nonlinear State-Dependent Parameter (SDP) transfer function models, using data generated by dynamic experiments conducted on the HEC-RAS model. The paper shows how this 'nominal' DME is able to emulate the distributed hydraulic model for a nominal set of its physically-defined parameters and it presents initial results from a complete DME that emulates the HEC-RAS model over a user-defined region of its parameter space.