Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy
AU - Holden, Claire
AU - Morais, Camilo
AU - Taylor, Jane
AU - Martin, Frank
AU - Beckett, Paul
AU - McAinsh, Martin
PY - 2021/11/9
Y1 - 2021/11/9
N2 - Background: Japanese knotweed (R. japonica var japonica) is one of the world’s 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed.Results: We have shown distinct differences in the spectral fingerprint region (1800–900 cm− 1) of Japanese knot-weed from three different regions in the UK that were sufficient to successfully identify plants from different geo-graphical regions with high accuracy using support vector machine (SVM) chemometrics.Conclusions: These differences were not correlated with environmental variations between regions, raising the possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. japonica to invade and thrive in such diverse habitats.
AB - Background: Japanese knotweed (R. japonica var japonica) is one of the world’s 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed.Results: We have shown distinct differences in the spectral fingerprint region (1800–900 cm− 1) of Japanese knot-weed from three different regions in the UK that were sufficient to successfully identify plants from different geo-graphical regions with high accuracy using support vector machine (SVM) chemometrics.Conclusions: These differences were not correlated with environmental variations between regions, raising the possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. japonica to invade and thrive in such diverse habitats.
KW - Ecosystem
KW - Epigenomics
KW - FTIR spectroscopy
KW - Invasive species
KW - Japanese knotweed
KW - Physiological adaptation
KW - Plants
KW - Principal component analysis
KW - Spectrum analysis
KW - Support vector machine
U2 - 10.1186/s12870-021-03293-y
DO - 10.1186/s12870-021-03293-y
M3 - Journal article
VL - 21
JO - BMC Plant Biology
JF - BMC Plant Biology
SN - 1471-2229
IS - 522
ER -