Home > Research > Publications & Outputs > Relationships between plant traits, soil proper...

Links

Text available via DOI:

View graph of relations

Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. / De Long, Jonathan R.; Jackson, Benjamin G.; Wilkinson, Anna et al.
In: Journal of Ecology, Vol. 107, No. 4, 25.03.2019, p. 1704-1719.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

De Long JR, Jackson BG, Wilkinson A, Pritchard WJ, Oakley S, Mason KE et al. Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. Journal of Ecology. 2019 Mar 25;107(4):1704-1719. Epub 2019 Mar 25. doi: 10.1111/1365-2745.13160

Author

Bibtex

@article{81a7ba95642b440abac90cd99973678f,
title = "Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland",
abstract = "The use of plant traits to predict ecosystem functions has been gaining growing attention. Above-ground plant traits, such as leaf nitrogen (N) content and specific leaf area (SLA), have been shown to strongly relate to ecosystem productivity, respiration and nutrient cycling. Furthermore, increasing plant functional trait diversity has been suggested as a possible mechanism to increase ecosystem carbon (C) storage. However, it is uncertain whether below-ground plant traits can be predicted by above-ground traits, and if both above- and below-ground traits can be used to predict soil properties and ecosystem-level functions. Here, we used two adjacent field experiments in temperate grassland to investigate if above- and below-ground plant traits are related, and whether relationships between plant traits, soil properties and ecosystem C fluxes (i.e. ecosystem respiration and net ecosystem exchange) measured in potted monocultures could be detected in mixed field communities. We found that certain shoot traits (e.g. shoot N and C, and leaf dry matter content) were related to root traits (e.g. root N, root C:N and root dry matter content) in monocultures, but such relationships were either weak or not detected in mixed communities. Some relationships between plant traits (i.e. shoot N, root N and/or shoot C:N) and soil properties (i.e. inorganic N availability and microbial community structure) were similar in monocultures and mixed communities, but they were more strongly linked to shoot traits in monocultures and root traits in mixed communities. Structural equation modelling showed that above- and below-ground traits and soil properties improved predictions of ecosystem C fluxes in monocultures, but not in mixed communities on the basis of community-weighted mean traits. Synthesis. Our results from a single grassland habitat detected relationships in monocultures between above- and below-ground plant traits, and between plant traits, soil properties and ecosystem C fluxes. However, these relationships were generally weaker or different in mixed communities. Our results demonstrate that while plant traits can be used to predict certain soil properties and ecosystem functions in monocultures, they are less effective for predicting how changes in plant species composition influence ecosystem functions in mixed communities.",
keywords = "above-ground–below-ground linkages, biodiversity, carbon, ecosystem function, net ecosystem exchange, nitrogen, plant functional traits, soil microbial communities",
author = "{De Long}, {Jonathan R.} and Jackson, {Benjamin G.} and Anna Wilkinson and Pritchard, {William J.} and Simon Oakley and Mason, {Kelly E.} and Stephan, {J{\"o}rg G.} and Ostle, {Nicholas J.} and David Johnson and Baggs, {Elizabeth M.} and Bardgett, {Richard D.}",
year = "2019",
month = mar,
day = "25",
doi = "10.1111/1365-2745.13160",
language = "English",
volume = "107",
pages = "1704--1719",
journal = "Journal of Ecology",
issn = "0022-0477",
publisher = "Blackwell-Wiley",
number = "4",

}

RIS

TY - JOUR

T1 - Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland

AU - De Long, Jonathan R.

AU - Jackson, Benjamin G.

AU - Wilkinson, Anna

AU - Pritchard, William J.

AU - Oakley, Simon

AU - Mason, Kelly E.

AU - Stephan, Jörg G.

AU - Ostle, Nicholas J.

AU - Johnson, David

AU - Baggs, Elizabeth M.

AU - Bardgett, Richard D.

PY - 2019/3/25

Y1 - 2019/3/25

N2 - The use of plant traits to predict ecosystem functions has been gaining growing attention. Above-ground plant traits, such as leaf nitrogen (N) content and specific leaf area (SLA), have been shown to strongly relate to ecosystem productivity, respiration and nutrient cycling. Furthermore, increasing plant functional trait diversity has been suggested as a possible mechanism to increase ecosystem carbon (C) storage. However, it is uncertain whether below-ground plant traits can be predicted by above-ground traits, and if both above- and below-ground traits can be used to predict soil properties and ecosystem-level functions. Here, we used two adjacent field experiments in temperate grassland to investigate if above- and below-ground plant traits are related, and whether relationships between plant traits, soil properties and ecosystem C fluxes (i.e. ecosystem respiration and net ecosystem exchange) measured in potted monocultures could be detected in mixed field communities. We found that certain shoot traits (e.g. shoot N and C, and leaf dry matter content) were related to root traits (e.g. root N, root C:N and root dry matter content) in monocultures, but such relationships were either weak or not detected in mixed communities. Some relationships between plant traits (i.e. shoot N, root N and/or shoot C:N) and soil properties (i.e. inorganic N availability and microbial community structure) were similar in monocultures and mixed communities, but they were more strongly linked to shoot traits in monocultures and root traits in mixed communities. Structural equation modelling showed that above- and below-ground traits and soil properties improved predictions of ecosystem C fluxes in monocultures, but not in mixed communities on the basis of community-weighted mean traits. Synthesis. Our results from a single grassland habitat detected relationships in monocultures between above- and below-ground plant traits, and between plant traits, soil properties and ecosystem C fluxes. However, these relationships were generally weaker or different in mixed communities. Our results demonstrate that while plant traits can be used to predict certain soil properties and ecosystem functions in monocultures, they are less effective for predicting how changes in plant species composition influence ecosystem functions in mixed communities.

AB - The use of plant traits to predict ecosystem functions has been gaining growing attention. Above-ground plant traits, such as leaf nitrogen (N) content and specific leaf area (SLA), have been shown to strongly relate to ecosystem productivity, respiration and nutrient cycling. Furthermore, increasing plant functional trait diversity has been suggested as a possible mechanism to increase ecosystem carbon (C) storage. However, it is uncertain whether below-ground plant traits can be predicted by above-ground traits, and if both above- and below-ground traits can be used to predict soil properties and ecosystem-level functions. Here, we used two adjacent field experiments in temperate grassland to investigate if above- and below-ground plant traits are related, and whether relationships between plant traits, soil properties and ecosystem C fluxes (i.e. ecosystem respiration and net ecosystem exchange) measured in potted monocultures could be detected in mixed field communities. We found that certain shoot traits (e.g. shoot N and C, and leaf dry matter content) were related to root traits (e.g. root N, root C:N and root dry matter content) in monocultures, but such relationships were either weak or not detected in mixed communities. Some relationships between plant traits (i.e. shoot N, root N and/or shoot C:N) and soil properties (i.e. inorganic N availability and microbial community structure) were similar in monocultures and mixed communities, but they were more strongly linked to shoot traits in monocultures and root traits in mixed communities. Structural equation modelling showed that above- and below-ground traits and soil properties improved predictions of ecosystem C fluxes in monocultures, but not in mixed communities on the basis of community-weighted mean traits. Synthesis. Our results from a single grassland habitat detected relationships in monocultures between above- and below-ground plant traits, and between plant traits, soil properties and ecosystem C fluxes. However, these relationships were generally weaker or different in mixed communities. Our results demonstrate that while plant traits can be used to predict certain soil properties and ecosystem functions in monocultures, they are less effective for predicting how changes in plant species composition influence ecosystem functions in mixed communities.

KW - above-ground–below-ground linkages

KW - biodiversity

KW - carbon

KW - ecosystem function

KW - net ecosystem exchange

KW - nitrogen

KW - plant functional traits

KW - soil microbial communities

U2 - 10.1111/1365-2745.13160

DO - 10.1111/1365-2745.13160

M3 - Journal article

AN - SCOPUS:85063403086

VL - 107

SP - 1704

EP - 1719

JO - Journal of Ecology

JF - Journal of Ecology

SN - 0022-0477

IS - 4

ER -