Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Remediation of hexavalent chromium through adsorption by bentonite based Arquad (R) 2HT-75 organoclays
AU - Sarkar, B
AU - Xi, YF
AU - Megharaj, M
AU - Krishnamurti, GSR
AU - Rajarathnam, D
AU - Naidu, R
PY - 2010/11/15
Y1 - 2010/11/15
N2 - Unlike hydrophobic organic pollutants, the potential of organoclays to adsorb inorganic ionic contaminants is relatively underexplored. The present study attempts to characterise bentonite (QB) based organoclays synthesised from a commercially available, low-cost alkyl ammonium surfactant Arquad® 2HT-75 (Aq) and test their ability to adsorb hexavalent chromium (Cr (VI)) in aqueous solution. XRD, FTIR and TGA characterisation techniques prove successful modification of the bentonite structure and reveal that higher surfactant loadings gives rise to more ordered surfactant conformation in the organoclays. The zeta potential values indicate that higher surfactant loadings also create positive charges on the organoclay surfaces. Detailed isothermal and kinetic studies show that the organoclays effectively remove hexavalent chromium (Cr (VI)) from aqueous solution by both physical and chemical adsorption processes. Higher surfactant loadings provide better adsorption efficiency. The adsorption performance is reasonably efficient under the levels of pH, temperature, electrolyte concentration and natural organic matter concentration that generally prevail in contaminated soil and water. This study shows that organoclay sorbents offer good potential for remediating Cr (VI) under real environmental conditions.
AB - Unlike hydrophobic organic pollutants, the potential of organoclays to adsorb inorganic ionic contaminants is relatively underexplored. The present study attempts to characterise bentonite (QB) based organoclays synthesised from a commercially available, low-cost alkyl ammonium surfactant Arquad® 2HT-75 (Aq) and test their ability to adsorb hexavalent chromium (Cr (VI)) in aqueous solution. XRD, FTIR and TGA characterisation techniques prove successful modification of the bentonite structure and reveal that higher surfactant loadings gives rise to more ordered surfactant conformation in the organoclays. The zeta potential values indicate that higher surfactant loadings also create positive charges on the organoclay surfaces. Detailed isothermal and kinetic studies show that the organoclays effectively remove hexavalent chromium (Cr (VI)) from aqueous solution by both physical and chemical adsorption processes. Higher surfactant loadings provide better adsorption efficiency. The adsorption performance is reasonably efficient under the levels of pH, temperature, electrolyte concentration and natural organic matter concentration that generally prevail in contaminated soil and water. This study shows that organoclay sorbents offer good potential for remediating Cr (VI) under real environmental conditions.
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000282607600011&KeyUID=WOS:000282607600011
U2 - 10.1016/j.jhazmat.2010.06.110
DO - 10.1016/j.jhazmat.2010.06.110
M3 - Journal article
VL - 183
SP - 87
EP - 97
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
SN - 0304-3894
IS - 1-3
ER -