Rights statement: This is the author’s version of a work that was accepted for publication in Plant Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Plant Science, 255, 2017 DOI: 10.1016/j.plantsci.2016.11.002
Accepted author manuscript, 1.26 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Response-based selection of barley cultivars and legume species for complementarity
T2 - root morphology and exudation in relation to nutrient source
AU - Giles, Courtney D.
AU - Brown, Lawrie K.
AU - Adu, Michael O.
AU - Mezeli, Malika M.
AU - Sandral, Graeme A.
AU - Simpson, Richard J.
AU - Wendler, Renate
AU - Shand, Charles A.
AU - Menezes-Blackburn, Daniel
AU - Darch, Tegan
AU - Stutter, Marc I.
AU - Lumsdon, David G.
AU - Zhang, Hao
AU - Blackwell, Martin S.A.
AU - Wearing, Catherine
AU - Cooper, Patricia
AU - Haygarth, Philip M.
AU - George, Timothy S.
N1 - This is the author’s version of a work that was accepted for publication in Plant Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Plant Science, 255, 2017 DOI: 10.1016/j.plantsci.2016.11.002
PY - 2017/2
Y1 - 2017/2
N2 - Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants’ response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems.
AB - Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants’ response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems.
KW - Barley
KW - Legumes
KW - Plant nutrition
KW - Root morphology
KW - Exudation
U2 - 10.1016/j.plantsci.2016.11.002
DO - 10.1016/j.plantsci.2016.11.002
M3 - Journal article
VL - 255
SP - 12
EP - 28
JO - Plant Science
JF - Plant Science
SN - 0168-9452
ER -