Accepted author manuscript, 547 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - RETRACTED EBSRMF: Ensemble Based Similarity-Regularized Matrix Factorization to Predict Anticancer Drug Responses
AU - Shahzad, Muhammad
AU - Tahir, Muhammad Atif
AU - Khan, M. Atta
AU - Jiang, Richard
AU - Shams, Rauf Ahmed
PY - 2022/7/21
Y1 - 2022/7/21
N2 - Drug sensitivity prediction to a panel of cancer cell lines using computational approaches has been a challenge for two decades. With the emergence of high-throughput screening technologies, thousands of compounds and cancer cell lines panels with drug sensitivity data are publicly available at various pharmacogenomics databases. Analyzing these data is crucial to improve cancer treatment and develop new anticancer drugs. In this work, we propose EBSRMF: Ensemble Based Similarity-Regularized Matrix Factorization, which is a bagging based framework to improve the drug sensitivity prediction on the Cancer Cell Line Encyclopedia (CCLE) data. Based on the fact that similar drugs and cell lines exhibit similar drug response, we have investigated cell line and drug similarity matrices based on gene expression profiles and chemical structure respectively. The drug sensitivity value is used as outcome values which are the half maximal inhibitory concentrations (IC50). In order to improve the generalization ability of the proposed model, a homogeneous ensemble based bagging learning approach is also investigated where multiple SRMF models are used to train N subsets of the input data. The outcome of each training algorithm is aggregated using the averaging method to predict the outcome. Experiments are conducted on two benchmark datasets: CCLE and GDSC. The proposed model is compared with state-of-the-art models using multiple evaluation metrics including Root Means Square Error (RMSE) and Pearson Correlation Coefficient (PCC). The proposed model is quite promising and achieves better performance on CCLE dataset when compared with the existing approaches.
AB - Drug sensitivity prediction to a panel of cancer cell lines using computational approaches has been a challenge for two decades. With the emergence of high-throughput screening technologies, thousands of compounds and cancer cell lines panels with drug sensitivity data are publicly available at various pharmacogenomics databases. Analyzing these data is crucial to improve cancer treatment and develop new anticancer drugs. In this work, we propose EBSRMF: Ensemble Based Similarity-Regularized Matrix Factorization, which is a bagging based framework to improve the drug sensitivity prediction on the Cancer Cell Line Encyclopedia (CCLE) data. Based on the fact that similar drugs and cell lines exhibit similar drug response, we have investigated cell line and drug similarity matrices based on gene expression profiles and chemical structure respectively. The drug sensitivity value is used as outcome values which are the half maximal inhibitory concentrations (IC50). In order to improve the generalization ability of the proposed model, a homogeneous ensemble based bagging learning approach is also investigated where multiple SRMF models are used to train N subsets of the input data. The outcome of each training algorithm is aggregated using the averaging method to predict the outcome. Experiments are conducted on two benchmark datasets: CCLE and GDSC. The proposed model is compared with state-of-the-art models using multiple evaluation metrics including Root Means Square Error (RMSE) and Pearson Correlation Coefficient (PCC). The proposed model is quite promising and achieves better performance on CCLE dataset when compared with the existing approaches.
KW - Drug sensiyivity
KW - Matrix factorization
KW - cancer
KW - ensemble learning
KW - keyword five
U2 - 10.3233/jifs-212867
DO - 10.3233/jifs-212867
M3 - Journal article
VL - 43
SP - 3443
EP - 3452
JO - Journal of Intelligent and Fuzzy Systems
JF - Journal of Intelligent and Fuzzy Systems
SN - 1064-1246
IS - 3
ER -