Accepted author manuscript, 738 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Retrieving, Classifying and Analysing Narrative Commentary in Unstructured (Glossy) Annual Reports Published as PDF Files
AU - El Haj, Mahmoud
AU - Alves, Paulo
AU - Rayson, Paul
AU - Walker, Martin
AU - Young, Steven
PY - 2020/1/1
Y1 - 2020/1/1
N2 - We provide a methodological contribution by developing, describing and evaluating a method for automatically retrieving and analysing text from digital PDF annual report files published by firms listed on the London Stock Exchange (LSE). The retrieval method retains information on document structure, enabling clear delineation between narrative and financial statement components of reports, and between individual sections within the narratives component. Retrieval accuracy exceeds 95% for manual validations using a random sample of 586 reports. Large-sample statistical validations using a comprehensive sample of reports published by non-financial LSE firms confirm that report length, narrative tone and (to a lesser degree) readability vary predictably with economic and regulatory factors. We demonstrate how the method is adaptable to non-English language documents and different regulatory regimes using a case study of Portuguese reports. We use the procedure to construct new research resources including corpora for commonly occurring annual report sections and a dataset of text properties for over 26,000 U.K. annual reports.
AB - We provide a methodological contribution by developing, describing and evaluating a method for automatically retrieving and analysing text from digital PDF annual report files published by firms listed on the London Stock Exchange (LSE). The retrieval method retains information on document structure, enabling clear delineation between narrative and financial statement components of reports, and between individual sections within the narratives component. Retrieval accuracy exceeds 95% for manual validations using a random sample of 586 reports. Large-sample statistical validations using a comprehensive sample of reports published by non-financial LSE firms confirm that report length, narrative tone and (to a lesser degree) readability vary predictably with economic and regulatory factors. We demonstrate how the method is adaptable to non-English language documents and different regulatory regimes using a case study of Portuguese reports. We use the procedure to construct new research resources including corpora for commonly occurring annual report sections and a dataset of text properties for over 26,000 U.K. annual reports.
U2 - 10.1080/00014788.2019.1609346
DO - 10.1080/00014788.2019.1609346
M3 - Journal article
VL - 50
SP - 6
EP - 34
JO - Accounting and Business Research
JF - Accounting and Business Research
SN - 0001-4788
IS - 1
ER -