Home > Research > Publications & Outputs > Ring current effects

Associated organisational unit


Text available via DOI:

View graph of relations

Ring current effects: factors affecting the NMR chemical shift of molecules adsorbed on porous carbons

Research output: Contribution to Journal/MagazineJournal articlepeer-review

<mark>Journal publication date</mark>10/04/2014
<mark>Journal</mark>The Journal of Physical Chemistry C
Issue number14
Number of pages7
Pages (from-to)7508-7514
Publication StatusPublished
Early online date28/03/14
<mark>Original language</mark>English


Nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to study the adsorption of molecules in porous carbons, a process which underpins applications ranging from electrochemical energy storage to water purification. Here we present density functional theory (DFT) calculations of the nucleus-independent chemical shift (NICS) near various sp(2)-hybridized carbon fragments to explore the structural factors that may affect the resonance frequencies observed for adsorbed species. The domain size of the delocalized electron system affects the calculated NICSs, with larger domains giving rise to larger chemical shieldings. In slit pores, overlap of the ring current effects from the pore walls is shown to increase the chemical shielding. Finally, curvature in the carbon sheets is shown to have a significant effect on the NICS. The trends observed are consistent with existing NMR results as well as new spectra presented for an electrolyte adsorbed on carbide-derived carbons prepared at different temperatures.