Home > Research > Publications & Outputs > Role of Phosphatidylinositol 3-Kinase and Speci...
View graph of relations

Role of Phosphatidylinositol 3-Kinase and Specific Protein Kinase B Isoforms in the Suppression of Apoptosis Mediated by the Abelson Protein-tyrosine Kinase.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Role of Phosphatidylinositol 3-Kinase and Specific Protein Kinase B Isoforms in the Suppression of Apoptosis Mediated by the Abelson Protein-tyrosine Kinase. / Tang, Xiuwen; Downes, C. Peter; Whetton, Anthony D. et al.
In: Journal of Biological Chemistry, Vol. 275, No. 17, 28.04.2000, p. 13142-13148.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Tang X, Downes CP, Whetton AD, Owen-Lynch PJ. Role of Phosphatidylinositol 3-Kinase and Specific Protein Kinase B Isoforms in the Suppression of Apoptosis Mediated by the Abelson Protein-tyrosine Kinase. Journal of Biological Chemistry. 2000 Apr 28;275(17):13142-13148.

Author

Tang, Xiuwen ; Downes, C. Peter ; Whetton, Anthony D. et al. / Role of Phosphatidylinositol 3-Kinase and Specific Protein Kinase B Isoforms in the Suppression of Apoptosis Mediated by the Abelson Protein-tyrosine Kinase. In: Journal of Biological Chemistry. 2000 ; Vol. 275, No. 17. pp. 13142-13148.

Bibtex

@article{19d2543508e7457c93ea5613ba01961c,
title = "Role of Phosphatidylinositol 3-Kinase and Specific Protein Kinase B Isoforms in the Suppression of Apoptosis Mediated by the Abelson Protein-tyrosine Kinase.",
abstract = "Leukemogenic oncogenes, such as the Abelson protein-tyrosine kinases (PTK), disrupt the normal regulation of survival, proliferation, and differentiation in hemopoietic progenitor cells. In the absence of cytokines, hemopoietic progenitor cells die by apoptosis. Abl PTKs mediate suppression of this apoptotic response leading to aberrant survival. To investigate the mechanism of Abl PTK action, we have used an interleukin-3-dependent murine mast cell line that expresses a temperature-sensitive form of the v-ABL PTK, which is active at the permissive temperature of 32 °C and inactive at 39 °C. At the permissive temperature, these cells are resistant to apoptosis induced both by the withdrawal of the hemopoietic growth factor (interleukin-3) and the addition of cytotoxic drugs. We demonstrate that v-Abl associates with and stimulates activation of phosphatidylinositol 3-kinase (PI3K) and, crucially, that this activation results in enhanced cellular levels of the mass of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Activation of PI3K leads to enhanced activity of PKB and increased levels of the anti-apoptotic protein Bcl-XL. Transfection of cells with a dominant negative PKB reduces both the Abl-stimulated PKB activity and the survival effect conferred by activation of this oncogene. Thus, PI3K and PKB are required for the anti-apoptotic effects of Abl PTK.",
author = "Xiuwen Tang and Downes, {C. Peter} and Whetton, {Anthony D.} and Owen-Lynch, {P. Jane}",
year = "2000",
month = apr,
day = "28",
language = "English",
volume = "275",
pages = "13142--13148",
journal = "Journal of Biological Chemistry",
issn = "1083-351X",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "17",

}

RIS

TY - JOUR

T1 - Role of Phosphatidylinositol 3-Kinase and Specific Protein Kinase B Isoforms in the Suppression of Apoptosis Mediated by the Abelson Protein-tyrosine Kinase.

AU - Tang, Xiuwen

AU - Downes, C. Peter

AU - Whetton, Anthony D.

AU - Owen-Lynch, P. Jane

PY - 2000/4/28

Y1 - 2000/4/28

N2 - Leukemogenic oncogenes, such as the Abelson protein-tyrosine kinases (PTK), disrupt the normal regulation of survival, proliferation, and differentiation in hemopoietic progenitor cells. In the absence of cytokines, hemopoietic progenitor cells die by apoptosis. Abl PTKs mediate suppression of this apoptotic response leading to aberrant survival. To investigate the mechanism of Abl PTK action, we have used an interleukin-3-dependent murine mast cell line that expresses a temperature-sensitive form of the v-ABL PTK, which is active at the permissive temperature of 32 °C and inactive at 39 °C. At the permissive temperature, these cells are resistant to apoptosis induced both by the withdrawal of the hemopoietic growth factor (interleukin-3) and the addition of cytotoxic drugs. We demonstrate that v-Abl associates with and stimulates activation of phosphatidylinositol 3-kinase (PI3K) and, crucially, that this activation results in enhanced cellular levels of the mass of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Activation of PI3K leads to enhanced activity of PKB and increased levels of the anti-apoptotic protein Bcl-XL. Transfection of cells with a dominant negative PKB reduces both the Abl-stimulated PKB activity and the survival effect conferred by activation of this oncogene. Thus, PI3K and PKB are required for the anti-apoptotic effects of Abl PTK.

AB - Leukemogenic oncogenes, such as the Abelson protein-tyrosine kinases (PTK), disrupt the normal regulation of survival, proliferation, and differentiation in hemopoietic progenitor cells. In the absence of cytokines, hemopoietic progenitor cells die by apoptosis. Abl PTKs mediate suppression of this apoptotic response leading to aberrant survival. To investigate the mechanism of Abl PTK action, we have used an interleukin-3-dependent murine mast cell line that expresses a temperature-sensitive form of the v-ABL PTK, which is active at the permissive temperature of 32 °C and inactive at 39 °C. At the permissive temperature, these cells are resistant to apoptosis induced both by the withdrawal of the hemopoietic growth factor (interleukin-3) and the addition of cytotoxic drugs. We demonstrate that v-Abl associates with and stimulates activation of phosphatidylinositol 3-kinase (PI3K) and, crucially, that this activation results in enhanced cellular levels of the mass of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Activation of PI3K leads to enhanced activity of PKB and increased levels of the anti-apoptotic protein Bcl-XL. Transfection of cells with a dominant negative PKB reduces both the Abl-stimulated PKB activity and the survival effect conferred by activation of this oncogene. Thus, PI3K and PKB are required for the anti-apoptotic effects of Abl PTK.

M3 - Journal article

VL - 275

SP - 13142

EP - 13148

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 1083-351X

IS - 17

ER -