Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Safeguarding migratory fish via strategic planning of future small hydropower in Brazil
AU - Belisario D'araujo Couto, Thiago
AU - L. Messager, Mathis
AU - Olden, Julian D.
PY - 2021/5/1
Y1 - 2021/5/1
N2 - Small hydropower plants (SHPs) are proliferating globally, but their cumulative threat to blocking migratory fish and the fisheries that these fish sustain has been underappreciated when compared with large hydropower plants (LHPs). Here, we quantified the trade-offs between hydroelectric generation capacity and the impacts on river connectivity for thousands of current and projected future dams across Brazil. SHPs are the main source of river fragmentation, resulting in average connectivity losses of fourfold greater than LHPs. Fragmentation by SHPs is projected to increase by 21% in the future, and two-thirds of the 191 migratory species assessed occupy basins that will experience greater connectivity losses due to SHPs than LHPs. A Pareto frontier analysis identified future dam portfolios that could halve the number of hydropower plants that are required to deliver the same energy-generation capacity compared with the least-favourable solutions, while simultaneously resulting in lower river fragmentation and protecting numerous undammed basins. Our results highlight the need for strategic planning that considers the unprecedented growth and cumulative effects of SHPs.
AB - Small hydropower plants (SHPs) are proliferating globally, but their cumulative threat to blocking migratory fish and the fisheries that these fish sustain has been underappreciated when compared with large hydropower plants (LHPs). Here, we quantified the trade-offs between hydroelectric generation capacity and the impacts on river connectivity for thousands of current and projected future dams across Brazil. SHPs are the main source of river fragmentation, resulting in average connectivity losses of fourfold greater than LHPs. Fragmentation by SHPs is projected to increase by 21% in the future, and two-thirds of the 191 migratory species assessed occupy basins that will experience greater connectivity losses due to SHPs than LHPs. A Pareto frontier analysis identified future dam portfolios that could halve the number of hydropower plants that are required to deliver the same energy-generation capacity compared with the least-favourable solutions, while simultaneously resulting in lower river fragmentation and protecting numerous undammed basins. Our results highlight the need for strategic planning that considers the unprecedented growth and cumulative effects of SHPs.
U2 - 10.1038/s41893-020-00665-4
DO - 10.1038/s41893-020-00665-4
M3 - Journal article
VL - 4
SP - 409
EP - 416
JO - Nature Sustainability
JF - Nature Sustainability
SN - 2398-9629
IS - 5
ER -