Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Satellite and ground based seasonal variability of NO2 and SO2 over New Delhi, India
AU - Pandey, A.K.
AU - Kumar, R.P.
AU - Kumar, K.
PY - 2015/10/16
Y1 - 2015/10/16
N2 - Remote sensing technology application emerges as a useful tool for exploring atmospheric pollution revelation in the last two decade. In this study, we used Aura satellite Ozone Monitoring Instrument (OMI) tropospheric NO2 and pbl SO2 retrieval data (October 2004 – September 2013) to generate a composite spatial map of different seasons over New Delhi National Capital Region (NCR). For surface measurements, we used Central Pollution Control Board (CPCB) NO2 and SO2 data (January 2005 – December 2013). Further, we compared the satellite retrievals data to the surface measurements. A higher NO2 concentration in both OMI and CPCB stations measurements are obtained in winter season followed by summer and minimum in monsoon months. OMI SO2 concentration is higher in monsoon months and almost comparable in summer and winter seasons. We obtained a statistically significant correlation between OMI tropospheric NO2 and CPCB surface measurements.
AB - Remote sensing technology application emerges as a useful tool for exploring atmospheric pollution revelation in the last two decade. In this study, we used Aura satellite Ozone Monitoring Instrument (OMI) tropospheric NO2 and pbl SO2 retrieval data (October 2004 – September 2013) to generate a composite spatial map of different seasons over New Delhi National Capital Region (NCR). For surface measurements, we used Central Pollution Control Board (CPCB) NO2 and SO2 data (January 2005 – December 2013). Further, we compared the satellite retrievals data to the surface measurements. A higher NO2 concentration in both OMI and CPCB stations measurements are obtained in winter season followed by summer and minimum in monsoon months. OMI SO2 concentration is higher in monsoon months and almost comparable in summer and winter seasons. We obtained a statistically significant correlation between OMI tropospheric NO2 and CPCB surface measurements.
U2 - 10.1117/12.2193542
DO - 10.1117/12.2193542
M3 - Conference contribution/Paper
SN - 9781628418507
VL - 9640
BT - Proceedings of SPIE - The International Society for Optical Engineering
PB - SPIE
T2 - SPIE Remote Sensing
Y2 - 21 September 2015 through 24 September 2015
ER -