Accepted author manuscript, 676 KB, PDF document
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Scalable Content-centric Routing for Hybrid ICN
AU - Rene, Sergi
AU - Pavlou, George
AU - Ascigil, Onur
PY - 2023/7/25
Y1 - 2023/7/25
N2 - Hybrid Information-Centric Networking (hICN) is an incrementally-deployable information-centric networking architecture that is built on top of IPv6. In hICN, application-level identifiers are directly used to route interest packets (i.e., request for content) to fetch a copy of the desired content/data from any location. However, following the Internet Protocol conventions that require storing pre-computed routing/forwarding state for all prefixes in the routers raises scalability concerns, especially at the inter-domain level. Here we consider instead the other extreme; i.e. on-demand routing computation for content name prefixes when interest packets arrive at the router. Following this approach, we propose a centralized routing service within a domain that keeps a mapping between hICN name prefixes and locators (i.e., routable addresses) to hICN routers. Once a locator is received, an hICN router forwards an interest packet towards the intended destination using segment routing. We evaluated the proposed solution through a real testbed implementation in order to demonstrate that the performance is equivalent to typical hICN forwarding, while offering a scalability solution.
AB - Hybrid Information-Centric Networking (hICN) is an incrementally-deployable information-centric networking architecture that is built on top of IPv6. In hICN, application-level identifiers are directly used to route interest packets (i.e., request for content) to fetch a copy of the desired content/data from any location. However, following the Internet Protocol conventions that require storing pre-computed routing/forwarding state for all prefixes in the routers raises scalability concerns, especially at the inter-domain level. Here we consider instead the other extreme; i.e. on-demand routing computation for content name prefixes when interest packets arrive at the router. Following this approach, we propose a centralized routing service within a domain that keeps a mapping between hICN name prefixes and locators (i.e., routable addresses) to hICN routers. Once a locator is received, an hICN router forwards an interest packet towards the intended destination using segment routing. We evaluated the proposed solution through a real testbed implementation in order to demonstrate that the performance is equivalent to typical hICN forwarding, while offering a scalability solution.
KW - Routing
KW - Scalability
KW - hICN
U2 - 10.1109/LANMAN58293.2023.10189421
DO - 10.1109/LANMAN58293.2023.10189421
M3 - Conference contribution/Paper
SN - 9798350346947
T3 - IEEE Workshop on Local and Metropolitan Area Networks
SP - 1
EP - 6
BT - 2023 IEEE 29th International Symposium on Local and Metropolitan Area Networks, LANMAN 2023
ER -