Rights statement: This is the author’s version of a work that was accepted for publication in Pattern Recognition. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition, 135, 2023 DOI: 10.1016/j.patcog.2022.109021
Accepted author manuscript, 10.8 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Self-Supervised Leaf Segmentation under Complex Lighting Conditions
AU - Lin, Xufeng
AU - Li, Chang-Tsun
AU - Adams, Scott
AU - Kouzani, Abbas Z.
AU - Jiang, Richard
AU - He, Ligang
AU - Hu, Yongjian
AU - Vernon, Michael
AU - Doeven, Egan H.
AU - Webb, Lawrence
AU - Mcclellan, Todd
AU - Guskic, Adam
N1 - This is the author’s version of a work that was accepted for publication in Pattern Recognition. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition, 135, 2023 DOI: 10.1016/j.patcog.2022.109021
PY - 2023/3/31
Y1 - 2023/3/31
N2 - As an essential prerequisite task in image-based plant phenotyping, leaf segmentation has garnered increasing attention in recent years. While self-supervised learning is emerging as an effective alternative to various computer vision tasks, its adaptation for image-based plant phenotyping remains rather unexplored. In this work, we present a self-supervised leaf segmentation framework consisting of a self-supervised semantic segmentation model, a color-based leaf segmentation algorithm, and a self-supervised color correction model. The self-supervised semantic segmentation model groups the semantically similar pixels by iteratively referring to the self-contained information, allowing the pixels of the same semantic object to be jointly considered by the color-based leaf segmentation algorithm for identifying the leaf regions. Additionally, we propose to use a self-supervised color correction model for images taken under complex illumination conditions. Experimental results on datasets of different plant species demonstrate the potential of the proposed self-supervised framework in achieving effective and generalizable leaf segmentation.
AB - As an essential prerequisite task in image-based plant phenotyping, leaf segmentation has garnered increasing attention in recent years. While self-supervised learning is emerging as an effective alternative to various computer vision tasks, its adaptation for image-based plant phenotyping remains rather unexplored. In this work, we present a self-supervised leaf segmentation framework consisting of a self-supervised semantic segmentation model, a color-based leaf segmentation algorithm, and a self-supervised color correction model. The self-supervised semantic segmentation model groups the semantically similar pixels by iteratively referring to the self-contained information, allowing the pixels of the same semantic object to be jointly considered by the color-based leaf segmentation algorithm for identifying the leaf regions. Additionally, we propose to use a self-supervised color correction model for images taken under complex illumination conditions. Experimental results on datasets of different plant species demonstrate the potential of the proposed self-supervised framework in achieving effective and generalizable leaf segmentation.
KW - Self-supervised learning
KW - Convolutional neural networks
KW - Image-based plant phenotyping
KW - Leaf segmentation
KW - Color correction
KW - Cannabis
U2 - 10.1016/j.patcog.2022.109021
DO - 10.1016/j.patcog.2022.109021
M3 - Journal article
VL - 135
JO - Pattern Recognition
JF - Pattern Recognition
SN - 0031-3203
M1 - 109021
ER -