Accepted author manuscript, 24.4 MB, PDF document
Available under license: CC BY
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Semantic Segmentation under Adverse Conditions
T2 - A Weather and Nighttime-aware Synthetic Data-based Approach
AU - Kerim, Abdulrahman
AU - Chamone, Felipe
AU - De Souza Ramos, Washington
AU - Soriano Marcolino, Leandro
AU - Nascimento, Erickson R.
AU - Jiang, Richard
PY - 2022/9/30
Y1 - 2022/9/30
N2 - Recent semantic segmentation models perform well under standard weather conditions and sufficient illumination but struggle with adverse weather conditions and nighttime. Collecting and annotating training data under these conditions is expensive, timeconsuming, error-prone, and not always practical. Usually, synthetic data is used as a feasible data source to increase the amount of training data. However, just directly using synthetic data may actually harm the model’s performance under normal weather conditions while getting only small gains in adverse situations. Therefore, we present a novel architecture specifically designed for using synthetic training data for domain adaptation. We propose a simple yet powerful addition to DeepLabV3+ by using weather and time-of-the-day supervisors trained with multi-task learning, making it both weatherand nighttime aware, which improves its mIoU accuracy by 14 percentage points on the ACDC dataset while maintaining a score of 75% mIoU on the Cityscapes dataset. Our code is available at https://github.com/lsmcolab/Semantic-Segmentation-under-Adverse-Conditions.
AB - Recent semantic segmentation models perform well under standard weather conditions and sufficient illumination but struggle with adverse weather conditions and nighttime. Collecting and annotating training data under these conditions is expensive, timeconsuming, error-prone, and not always practical. Usually, synthetic data is used as a feasible data source to increase the amount of training data. However, just directly using synthetic data may actually harm the model’s performance under normal weather conditions while getting only small gains in adverse situations. Therefore, we present a novel architecture specifically designed for using synthetic training data for domain adaptation. We propose a simple yet powerful addition to DeepLabV3+ by using weather and time-of-the-day supervisors trained with multi-task learning, making it both weatherand nighttime aware, which improves its mIoU accuracy by 14 percentage points on the ACDC dataset while maintaining a score of 75% mIoU on the Cityscapes dataset. Our code is available at https://github.com/lsmcolab/Semantic-Segmentation-under-Adverse-Conditions.
KW - Semantic Segmentation
KW - Domain Adaptation
KW - Synthetic Data
KW - Adverse Conditions
M3 - Conference contribution/Paper
BT - The British Machine Vision Conference (BMVC)
ER -