Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Semi-supervised Learning Guided by the Generalized Bayes Rule Under Soft Revision
AU - Dietrich, Stefan
AU - Rodemann, Julian
AU - Jansen, Christoph
PY - 2024/8/10
Y1 - 2024/8/10
N2 - We provide a theoretical and computational investigation of the Gamma-Maximin method with soft revision, which was recently proposed as a robust criterion for pseudo-label selection (PLS) in semi-supervised learning. Opposed to traditional methods for PLS we use credal sets of priors (“generalized Bayes”) to represent the epistemic modeling uncertainty. These latter are then updated by the Gamma-Maximin method with soft revision. We eventually select pseudo-labeled data that are most likely in light of the least favorable distribution from the so updated credal set. We formalize the task of finding optimal pseudo-labeled data w.r.t. the Gamma-Maximin method with soft revision as an optimization problem. A concrete implementation for the class of logistic models then allows us to compare the predictive power of the method with competing approaches. It is observed that the Gamma-Maximin method with soft revision can achieve very promising results, especially when the proportion of labeled data is low.
AB - We provide a theoretical and computational investigation of the Gamma-Maximin method with soft revision, which was recently proposed as a robust criterion for pseudo-label selection (PLS) in semi-supervised learning. Opposed to traditional methods for PLS we use credal sets of priors (“generalized Bayes”) to represent the epistemic modeling uncertainty. These latter are then updated by the Gamma-Maximin method with soft revision. We eventually select pseudo-labeled data that are most likely in light of the least favorable distribution from the so updated credal set. We formalize the task of finding optimal pseudo-labeled data w.r.t. the Gamma-Maximin method with soft revision as an optimization problem. A concrete implementation for the class of logistic models then allows us to compare the predictive power of the method with competing approaches. It is observed that the Gamma-Maximin method with soft revision can achieve very promising results, especially when the proportion of labeled data is low.
U2 - 10.1007/978-3-031-65993-5_13
DO - 10.1007/978-3-031-65993-5_13
M3 - Conference contribution/Paper
SN - 9783031659928
T3 - Advances in Intelligent Systems and Computing (AISC)
SP - 110
EP - 117
BT - Combining, Modelling and Analyzing Imprecision, Randomness and Dependence
PB - Springer
CY - Cham
ER -