Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Sensitivity study on criticality safety analysis of multiple misloading within the spent fuel storage cask
AU - Alrawash, Saed
AU - Boravy, Muth
AU - Yoo, Seung Uk
AU - Han, Hyuk
AU - Kim, Soon Young
AU - Park, Moon-ghu
AU - Park, Chang Je
PY - 2020/9/1
Y1 - 2020/9/1
N2 - The objective of this study is to conduct a sensitivity analysis on multiple fuel assembly misloading within the spent nuclear fuel (SNF) cask to evaluate the reactivity change when underburned fuel assemblies are loaded. As the fuel composition changes during burnup, burnup credit has been considered involving several underburned values. The calculations have been performed on the GBC-32 Westinghouse 17 × 17 fuel design involving 1–16 misloaded assemblies with various values of discharge burnups and several different loading patterns. The isotopic depletion and decay analysis have been evaluated using ORIGEN-ARP, while the criticality calculations have been performed using KENO VI Monte Carlo criticality code. The results show that different loading patterns have significant effects on k eff for each misloaded assembly. The maximum variation of k eff is 0.12040 for six misloaded assemblies, which have 40 different loading configurations. It was also found that one misloaded assembly is acceptable for all values of underburned fuel from 0% to 70% of the minimum value required for loading, while 0% underburned cases are acceptable to be loaded for 1–16 misloaded assemblies.
AB - The objective of this study is to conduct a sensitivity analysis on multiple fuel assembly misloading within the spent nuclear fuel (SNF) cask to evaluate the reactivity change when underburned fuel assemblies are loaded. As the fuel composition changes during burnup, burnup credit has been considered involving several underburned values. The calculations have been performed on the GBC-32 Westinghouse 17 × 17 fuel design involving 1–16 misloaded assemblies with various values of discharge burnups and several different loading patterns. The isotopic depletion and decay analysis have been evaluated using ORIGEN-ARP, while the criticality calculations have been performed using KENO VI Monte Carlo criticality code. The results show that different loading patterns have significant effects on k eff for each misloaded assembly. The maximum variation of k eff is 0.12040 for six misloaded assemblies, which have 40 different loading configurations. It was also found that one misloaded assembly is acceptable for all values of underburned fuel from 0% to 70% of the minimum value required for loading, while 0% underburned cases are acceptable to be loaded for 1–16 misloaded assemblies.
U2 - 10.1016/j.anucene.2020.107516
DO - 10.1016/j.anucene.2020.107516
M3 - Journal article
VL - 144
JO - annals of nuclear energy
JF - annals of nuclear energy
M1 - 107516
ER -