Home > Research > Publications & Outputs > Sequential activation of M1 and M2 phenotypes i...

Links

Text available via DOI:

View graph of relations

Sequential activation of M1 and M2 phenotypes in macrophages by Mg degradation from Ti-Mg alloy for enhanced osteogenesis

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • LuXin Liang
  • Daye Song
  • Kai Wu
  • Zhengxiao Ouyang
  • Qianli Huang
  • Hong Wu
Close
Article number17
<mark>Journal publication date</mark>28/04/2022
<mark>Journal</mark>Biomaterials research
Issue number1
Volume26
Number of pages9
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Background
Even though the modulatory effects of Magnisum (Mg) and its alloys on bone-healing cells have been widely investigated during the last two decades, relatively limited attention has been paid on their inflammation-modulatory properties. Understanding the activation process of macrophages in response to the dynamic degradation process of Mg as well as the relationship between macrophage phenotypes and their osteogenic potential is critical for the design and development of advanced Mg-based or Mg-incorporated biomaterials.

Methods
In this work, a Ti-0.625 Mg (wt.%) alloy fabricated by mechanical alloying (MA) and subsequent spark plasma sintering (SPS) was employed as a material model to explore the inflammatory response and osteogenic performance in vitro and in vivo by taking pure Ti as the control. The data analysis was performed following Student’s t-test.

Results
The results revealed that the macrophages grown on the Ti-0.625 Mg alloy underwent sequential activation of M1 and M2 phenotypes during a culture period of 5 days. The initially increased environmental pH (~ 8.03) was responsible for the activation of M1 macrophages, while accumulated Mg2+ within cells contributed to the lateral M2 phenotype activation. Both M1 and M2 macrophages promoted osteoblast-like SaOS-2 cell maturation. In vivo experiment further showed the better anti-inflammatory response, regenerative potentiality and thinner fibrous tissue layer for the Ti-0.625 Mg alloy than pure Ti.

Conclusion
The results highlighted the roles of Mg degradation in the Ti-0.625 Mg alloy on the sequential activation of macrophage phenotypes and the importance of modulating M1-to-M2 transition in macrophage phenotypes for the design and development of inflammation-modulatory biomaterials.