Home > Research > Publications & Outputs > Serum prestin level may increase following musi...

Electronic data

  • EANDH-D-23-00236_R2

    Accepted author manuscript, 2.29 MB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

Serum prestin level may increase following music exposure that induces temporary threshold shifts: a pilot study

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Serum prestin level may increase following music exposure that induces temporary threshold shifts: a pilot study. / Iliadou, Eleftheria; Plack, Christopher; Pastiadis, Konstantinos et al.
In: Ear and Hearing, Vol. 45, No. 4, 31.07.2024, p. 1059-1069.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Iliadou E, Plack C, Pastiadis K, Bibas A. Serum prestin level may increase following music exposure that induces temporary threshold shifts: a pilot study. Ear and Hearing. 2024 Jul 31;45(4):1059-1069. Epub 2024 Mar 15. doi: 10.1097/AUD.0000000000001499

Author

Iliadou, Eleftheria ; Plack, Christopher ; Pastiadis, Konstantinos et al. / Serum prestin level may increase following music exposure that induces temporary threshold shifts : a pilot study. In: Ear and Hearing. 2024 ; Vol. 45, No. 4. pp. 1059-1069.

Bibtex

@article{d6ee32bcc5a24c60ac4f776e4e1a4142,
title = "Serum prestin level may increase following music exposure that induces temporary threshold shifts: a pilot study",
abstract = "Objectives: To determine if blood prestin level changes after exposure to music at high sound pressure levels, and if this change is associated with temporary threshold shift (TTS) and/or changes in distortion product (DP) amplitude.Design: Participants were exposed to pop-rock music at 100 dBA for 15 min monaurally through headphones. Pure-tone audiometry, DP amplitude, and blood prestin level were measured before and after exposure.Results: Fourteen adults (9 women; age range: 20 to 54 years, median age = 31 [Interquartile ratio = 6.75]) with normal hearing were included in the study. Mean prestin level increased shortly after exposure to music, then returned to baseline within 1 week, although this trend was not observed in all participants. All participants presented TTS or a decrease in DP amplitude in at least one frequency after music exposure. There was a statistically significant average threshold elevation at 4 min postexposure. Statistically significant DP amplitude shifts were observed at 4 and 6 kHz, 2 min following exposure. Mean baseline serum prestin level (mean: 140.00 pg/mL, 95% confidence interval (CI): 125.92 to 154.07) progressively increased following music exposure, reaching a maximum at 2 hr (mean: 158.29 pg/mL, 95% CI: 130.42 to 186.66) and returned to preexposure level at 1 week (mean: 139.18 pg/mL, 95% CI: 114.69 to 163.68). However, after correction for multiple comparisons, mean prestin level showed no statistically significant increase from baseline at any timepoint. No correlation between maximum blood prestin level change and average TTS or distortion product otoacoustic emission amplitude shift was found. However, in an exploratory analysis, TTS at 6 kHz (the frequency at which maximum TTS occurred) decreased significantly as baseline blood prestin level increased.Conclusions: The results suggest that blood prestin level may change after exposure to music at high sound pressure levels, although statistical significance was not reached in this relatively small sample after correction. Baseline serum prestin level may also predict the degree of TTS. These findings thus suggest that the role of baseline serum prestin level as a proxy marker of cochlear susceptibility to intense music exposure should be further explored.",
author = "Eleftheria Iliadou and Christopher Plack and Konstantinos Pastiadis and Anthanasios Bibas",
year = "2024",
month = jul,
day = "31",
doi = "10.1097/AUD.0000000000001499",
language = "English",
volume = "45",
pages = "1059--1069",
journal = "Ear and Hearing",
issn = "0196-0202",
publisher = "Lippincott Williams and Wilkins",
number = "4",

}

RIS

TY - JOUR

T1 - Serum prestin level may increase following music exposure that induces temporary threshold shifts

T2 - a pilot study

AU - Iliadou, Eleftheria

AU - Plack, Christopher

AU - Pastiadis, Konstantinos

AU - Bibas, Anthanasios

PY - 2024/7/31

Y1 - 2024/7/31

N2 - Objectives: To determine if blood prestin level changes after exposure to music at high sound pressure levels, and if this change is associated with temporary threshold shift (TTS) and/or changes in distortion product (DP) amplitude.Design: Participants were exposed to pop-rock music at 100 dBA for 15 min monaurally through headphones. Pure-tone audiometry, DP amplitude, and blood prestin level were measured before and after exposure.Results: Fourteen adults (9 women; age range: 20 to 54 years, median age = 31 [Interquartile ratio = 6.75]) with normal hearing were included in the study. Mean prestin level increased shortly after exposure to music, then returned to baseline within 1 week, although this trend was not observed in all participants. All participants presented TTS or a decrease in DP amplitude in at least one frequency after music exposure. There was a statistically significant average threshold elevation at 4 min postexposure. Statistically significant DP amplitude shifts were observed at 4 and 6 kHz, 2 min following exposure. Mean baseline serum prestin level (mean: 140.00 pg/mL, 95% confidence interval (CI): 125.92 to 154.07) progressively increased following music exposure, reaching a maximum at 2 hr (mean: 158.29 pg/mL, 95% CI: 130.42 to 186.66) and returned to preexposure level at 1 week (mean: 139.18 pg/mL, 95% CI: 114.69 to 163.68). However, after correction for multiple comparisons, mean prestin level showed no statistically significant increase from baseline at any timepoint. No correlation between maximum blood prestin level change and average TTS or distortion product otoacoustic emission amplitude shift was found. However, in an exploratory analysis, TTS at 6 kHz (the frequency at which maximum TTS occurred) decreased significantly as baseline blood prestin level increased.Conclusions: The results suggest that blood prestin level may change after exposure to music at high sound pressure levels, although statistical significance was not reached in this relatively small sample after correction. Baseline serum prestin level may also predict the degree of TTS. These findings thus suggest that the role of baseline serum prestin level as a proxy marker of cochlear susceptibility to intense music exposure should be further explored.

AB - Objectives: To determine if blood prestin level changes after exposure to music at high sound pressure levels, and if this change is associated with temporary threshold shift (TTS) and/or changes in distortion product (DP) amplitude.Design: Participants were exposed to pop-rock music at 100 dBA for 15 min monaurally through headphones. Pure-tone audiometry, DP amplitude, and blood prestin level were measured before and after exposure.Results: Fourteen adults (9 women; age range: 20 to 54 years, median age = 31 [Interquartile ratio = 6.75]) with normal hearing were included in the study. Mean prestin level increased shortly after exposure to music, then returned to baseline within 1 week, although this trend was not observed in all participants. All participants presented TTS or a decrease in DP amplitude in at least one frequency after music exposure. There was a statistically significant average threshold elevation at 4 min postexposure. Statistically significant DP amplitude shifts were observed at 4 and 6 kHz, 2 min following exposure. Mean baseline serum prestin level (mean: 140.00 pg/mL, 95% confidence interval (CI): 125.92 to 154.07) progressively increased following music exposure, reaching a maximum at 2 hr (mean: 158.29 pg/mL, 95% CI: 130.42 to 186.66) and returned to preexposure level at 1 week (mean: 139.18 pg/mL, 95% CI: 114.69 to 163.68). However, after correction for multiple comparisons, mean prestin level showed no statistically significant increase from baseline at any timepoint. No correlation between maximum blood prestin level change and average TTS or distortion product otoacoustic emission amplitude shift was found. However, in an exploratory analysis, TTS at 6 kHz (the frequency at which maximum TTS occurred) decreased significantly as baseline blood prestin level increased.Conclusions: The results suggest that blood prestin level may change after exposure to music at high sound pressure levels, although statistical significance was not reached in this relatively small sample after correction. Baseline serum prestin level may also predict the degree of TTS. These findings thus suggest that the role of baseline serum prestin level as a proxy marker of cochlear susceptibility to intense music exposure should be further explored.

U2 - 10.1097/AUD.0000000000001499

DO - 10.1097/AUD.0000000000001499

M3 - Journal article

C2 - 38488693

VL - 45

SP - 1059

EP - 1069

JO - Ear and Hearing

JF - Ear and Hearing

SN - 0196-0202

IS - 4

ER -