Rights statement: ©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 1.25 MB, PDF document
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Short term power load forecasting using Deep Neural Networks
AU - Ud Din, Ghulam Mohi
AU - Marnerides, Angelos
N1 - ©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2017/1/26
Y1 - 2017/1/26
N2 - Accurate load forecasting greatly influences the planning processes undertaken in operation centres of energy providers that relate to the actual electricity generation, distribution, system maintenance as well as electricity pricing. This paper exploits the applicability of and compares the performance of the Feed-forward Deep Neural Network (FF-DNN) and Recurrent Deep Neural Network (R-DNN) models on the basis of accuracy and computational performance in the context of time-wise short term forecast of electricity load. The herein proposed method is evaluated over real datasets gathered in a period of 4 years and provides forecasts on the basis of days and weeks ahead. The contribution behind this work lies with the utilisation of a time-frequency (TF) feature selection procedure from the actual “raw” dataset that aids the regression procedure initiated by the aforementioned DNNs. We show that the introduced scheme may adequately learn hidden patterns and accurately determine the short-term load consumption forecast by utilising a range of heterogeneous sources of input that relate not necessarily with the measurement of load itself but also with other parameters such as the effects of weather, time, holidays, lagged electricity load and its distribution over the period. Overall, our generated outcomes reveal that the synergistic use of TF feature analysis with DNNs enables to obtain higher accuracy by capturing dominant factors that affect electricity consumption patterns and can surely contribute significantly in next generation power systems and the recently introduced SmartGrid.
AB - Accurate load forecasting greatly influences the planning processes undertaken in operation centres of energy providers that relate to the actual electricity generation, distribution, system maintenance as well as electricity pricing. This paper exploits the applicability of and compares the performance of the Feed-forward Deep Neural Network (FF-DNN) and Recurrent Deep Neural Network (R-DNN) models on the basis of accuracy and computational performance in the context of time-wise short term forecast of electricity load. The herein proposed method is evaluated over real datasets gathered in a period of 4 years and provides forecasts on the basis of days and weeks ahead. The contribution behind this work lies with the utilisation of a time-frequency (TF) feature selection procedure from the actual “raw” dataset that aids the regression procedure initiated by the aforementioned DNNs. We show that the introduced scheme may adequately learn hidden patterns and accurately determine the short-term load consumption forecast by utilising a range of heterogeneous sources of input that relate not necessarily with the measurement of load itself but also with other parameters such as the effects of weather, time, holidays, lagged electricity load and its distribution over the period. Overall, our generated outcomes reveal that the synergistic use of TF feature analysis with DNNs enables to obtain higher accuracy by capturing dominant factors that affect electricity consumption patterns and can surely contribute significantly in next generation power systems and the recently introduced SmartGrid.
M3 - Conference contribution/Paper
SN - 9781509045891
BT - 2017 International Conference on Computing, Networking and Communications (ICNC)
PB - IEEE
T2 - IEEE ICNC 2017 : International Conference on Computing, Networking and Communications, 2017
Y2 - 26 January 2017 through 29 January 2017
ER -