Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Luminescence. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Luminescence, 244, 2021 DOI: 10.1016/j.jlumin.2021.118699
Accepted author manuscript, 5.86 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Simulation of optical behavior of YAG:Ce3+@SiO2 phosphor used for chip scale packages WLED
AU - Shi, Yahui
AU - Su, Xinqing
AU - Zhu, Haitao
AU - Fu, Renli
AU - He, Qinjiang
AU - Zhu, Min
AU - Ren, Haidong
N1 - This is the author’s version of a work that was accepted for publication in Journal of Luminescence. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Luminescence, 244, 2021 DOI: 10.1016/j.jlumin.2021.118699
PY - 2022/4/30
Y1 - 2022/4/30
N2 - YAG:Ce3+ yellow phosphor are particularly used luminescent materials to produce white light in phosphor-converted white LED (pc-WLED). Surface coating of YAG phosphor is the main concern for desired optical performance of the phosphors. Many scholars conducted various experimental analysis on the surface coating of phosphors to improve yellow emission, but the theoretical explanation by which phosphor coating could help improving light efficiency has not yet been studied. In this paper, based on Mie theory, the optical constants such as scattering coefficient, absorption coefficient and asymmetry parameter of YAG:Ce3+ phosphor and YAG@SiO2 (YAG:Ce3+ phosphor surface coated with nano-SiO2 layer) were calculated. An optical configuration of chip scale packages (CSP) WLED was constructed by coupling YAG:Ce3+ or YAG@SiO2 phosphors with a LED laser. Based on the optical parameters calculated by Mie theory, the luminescent properties of YAG:Ce3+ and YAG@SiO2 WLED were simulated by Monte Carlo method. The results showed that a thin SiO2 coating layer on YAG phosphor result in an overall increase in luminous performances compared with original YAG WLED. The absorption coefficient of phosphor is the main concern affecting the light emission in WLED. Due to the fact that YAG@SiO2 possess higher 460 nm absorption coefficient , it could absorb more blue light than YAG, thereby it has a 1.2% higher conversion efficiency than YAG, finally the enhanced luminous efficiency of YAG@SiO2 WLED is obtained. The results obtained in this work provides a potential method in future WLED packaging designing.
AB - YAG:Ce3+ yellow phosphor are particularly used luminescent materials to produce white light in phosphor-converted white LED (pc-WLED). Surface coating of YAG phosphor is the main concern for desired optical performance of the phosphors. Many scholars conducted various experimental analysis on the surface coating of phosphors to improve yellow emission, but the theoretical explanation by which phosphor coating could help improving light efficiency has not yet been studied. In this paper, based on Mie theory, the optical constants such as scattering coefficient, absorption coefficient and asymmetry parameter of YAG:Ce3+ phosphor and YAG@SiO2 (YAG:Ce3+ phosphor surface coated with nano-SiO2 layer) were calculated. An optical configuration of chip scale packages (CSP) WLED was constructed by coupling YAG:Ce3+ or YAG@SiO2 phosphors with a LED laser. Based on the optical parameters calculated by Mie theory, the luminescent properties of YAG:Ce3+ and YAG@SiO2 WLED were simulated by Monte Carlo method. The results showed that a thin SiO2 coating layer on YAG phosphor result in an overall increase in luminous performances compared with original YAG WLED. The absorption coefficient of phosphor is the main concern affecting the light emission in WLED. Due to the fact that YAG@SiO2 possess higher 460 nm absorption coefficient , it could absorb more blue light than YAG, thereby it has a 1.2% higher conversion efficiency than YAG, finally the enhanced luminous efficiency of YAG@SiO2 WLED is obtained. The results obtained in this work provides a potential method in future WLED packaging designing.
KW - YAG:Ce3+ phosphor
KW - YAG@SiO2
KW - Mie scattering
KW - Luminous efficiency
U2 - 10.1016/j.jlumin.2021.118699
DO - 10.1016/j.jlumin.2021.118699
M3 - Journal article
VL - 244
JO - JOURNAL OF LUMINESCENCE
JF - JOURNAL OF LUMINESCENCE
SN - 0022-2313
ER -