Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Simultaneous Adsorption of Tri- and Hexavalent Chromium by Organoclay Mixtures
AU - Sarkar, Binoy
AU - Naidu, Ravi
AU - Megharaj, Mallavarapu
PY - 2013/12/31
Y1 - 2013/12/31
N2 - Organoclays possess unique adsorption behaviour towards hydrophobic organic contaminants. They can also remediate ionic contaminants such as heavy metals and metalloids. The objective of the present study was to prepare organoclay and organoclay mixtures efficient to adsorb both cationic and anionic contaminants. The adsorbents were characterised by X-ray diffraction and infrared spectroscopy. Trivalent (Cr3+) and hexavalent (Cr2O7 2−) chromium were selected as the model contaminants representing cationic and anionic properties. Bentonite modified with cationic surfactant hexadecyl trimethylammonium bromide at double the cation exchange capacity of the clay remarkably improved Cr2O7 2− adsorption capacity (as high as 0.49 mmol g−1). Similarly, its modification with anionic surfactant sodium dodecyl sulphate at the same dosage improved Cr3+ adsorption (as high as 0.36 mmol g−1). When these two organoclays were physically mixed in equal proportions (1:1), the resultant organoclay mixture efficiently adsorbed both Cr3+ (as high as 0.21 mmol g−1) and Cr2O7 2− (as high as 0.32 mmol g−1) implying that the mixture could remediate both anionic and cationic contaminants simultaneously. The adsorption of Cr3+ by the organoclay and organoclay mixture fitted well to the Langmuir isothermal model whereas the adsorption of Cr2O7 2− fitted well to the Freundlich model.
AB - Organoclays possess unique adsorption behaviour towards hydrophobic organic contaminants. They can also remediate ionic contaminants such as heavy metals and metalloids. The objective of the present study was to prepare organoclay and organoclay mixtures efficient to adsorb both cationic and anionic contaminants. The adsorbents were characterised by X-ray diffraction and infrared spectroscopy. Trivalent (Cr3+) and hexavalent (Cr2O7 2−) chromium were selected as the model contaminants representing cationic and anionic properties. Bentonite modified with cationic surfactant hexadecyl trimethylammonium bromide at double the cation exchange capacity of the clay remarkably improved Cr2O7 2− adsorption capacity (as high as 0.49 mmol g−1). Similarly, its modification with anionic surfactant sodium dodecyl sulphate at the same dosage improved Cr3+ adsorption (as high as 0.36 mmol g−1). When these two organoclays were physically mixed in equal proportions (1:1), the resultant organoclay mixture efficiently adsorbed both Cr3+ (as high as 0.21 mmol g−1) and Cr2O7 2− (as high as 0.32 mmol g−1) implying that the mixture could remediate both anionic and cationic contaminants simultaneously. The adsorption of Cr3+ by the organoclay and organoclay mixture fitted well to the Langmuir isothermal model whereas the adsorption of Cr2O7 2− fitted well to the Freundlich model.
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000328360500007&KeyUID=WOS:000328360500007
U2 - 10.1007/s11270-013-1704-0
DO - 10.1007/s11270-013-1704-0
M3 - Journal article
VL - 224
JO - Water, Air, & Soil Pollution
JF - Water, Air, & Soil Pollution
SN - 0049-6979
IS - 12
M1 - 1704
ER -