Final published version
Research output: Contribution to Journal/Magazine › Review article › peer-review
Research output: Contribution to Journal/Magazine › Review article › peer-review
}
TY - JOUR
T1 - Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states
AU - Bardgett, Richard D.
AU - Caruso, Tancredi
PY - 2020/3/16
Y1 - 2020/3/16
N2 - A major challenge for advancing our understanding of the functional role of soil microbial communities is to link changes in their structure and function under climate change. To address this challenge requires new understanding of the mechanisms that underlie the capacity of soil microbial communities to resist and recover from climate extremes. Here, we synthesize emerging understanding of the intrinsic and extrinsic factors that influence the resistance and resilience of soil microbial communities to climate extremes, with a focus on drought, and identify drivers that might trigger abrupt changes to alternative states. We highlight research challenges and propose a path for advancing our understanding of the resistance and resilience of soil microbial communities to climate extremes, and of their vulnerability to transitions to alternative states, including the use of trait-based approaches. We identify a need for new approaches to quantify resistance and resilience of soil microbial communities, and to identify thresholds for transitions to alternative states. We show how high-resolution time series coupled with gradient designs will enable detecting response patterns to interacting drivers. Finally, to account for extrinsic factors, we suggest that future studies should use environmental gradients to track soil microbial community responses to climate extremes in space and time.
AB - A major challenge for advancing our understanding of the functional role of soil microbial communities is to link changes in their structure and function under climate change. To address this challenge requires new understanding of the mechanisms that underlie the capacity of soil microbial communities to resist and recover from climate extremes. Here, we synthesize emerging understanding of the intrinsic and extrinsic factors that influence the resistance and resilience of soil microbial communities to climate extremes, with a focus on drought, and identify drivers that might trigger abrupt changes to alternative states. We highlight research challenges and propose a path for advancing our understanding of the resistance and resilience of soil microbial communities to climate extremes, and of their vulnerability to transitions to alternative states, including the use of trait-based approaches. We identify a need for new approaches to quantify resistance and resilience of soil microbial communities, and to identify thresholds for transitions to alternative states. We show how high-resolution time series coupled with gradient designs will enable detecting response patterns to interacting drivers. Finally, to account for extrinsic factors, we suggest that future studies should use environmental gradients to track soil microbial community responses to climate extremes in space and time.
KW - Alternative states
KW - Ecosystem function
KW - Microbial traits
KW - Resilience
KW - Resistance
KW - Soil microbial communities
U2 - 10.1098/rstb.2019.0112
DO - 10.1098/rstb.2019.0112
M3 - Review article
C2 - 31983338
VL - 375
JO - Philosophical Transactions of the Royal Society B: Biological Sciences
JF - Philosophical Transactions of the Royal Society B: Biological Sciences
SN - 0962-8436
IS - 1794
M1 - 20190112
ER -