Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Sorption and desorption of bisphenols on commercial plastics and the effect of UV aging
AU - Chen, Xiaoxin
AU - Chen, Chang-Er
AU - Guo, Xiaoyuan
AU - Sweetman, Andrew J.
PY - 2023/1/31
Y1 - 2023/1/31
N2 - Plastics gradually degrade in the natural environment from the effect of irradiation, which can change the surface properties of plastics and affect the migration behaviour of pollutants. Up to now, studies on the sorption/desorption behaviour of organic pollutants on aged plastics are still limited. In this study, several types of commercial plastics (polyurethane (PU), polyamide (PA), polyvinyl chloride (PVC), expanded polystyrene (EPS)) were selected to investigate the sorption and release behaviour for four kinds of bisphenols (bisphenol-F, A, B, AP). The results from Raman spectroscopy and scanning electron microscopy (SEM) analysis showed evidence of oxidization and surface cracks of plastics after irradiation. The sorption behaviour for both fresh and aged plastics were dominated by hydrophobicity. In addition, the electrostatic force, H-bonding interaction, and π-π interaction were also the important factors impacting the sorption process. The desorption kinetics behaviour indicates that desorption becomes faster after aging. Hydrophobicity is also an important factor that affects desorption behaviour. This study showed that sorption capacity for most fresh and aged plastics was enhanced by the impact of salinity and dissolved organic matter (DOM). Increased temperature could increase the desorption of bisphenols on both fresh and aged plastics, which illustrated that warm environments would promote more pollutants be released from plastics to water bodies.
AB - Plastics gradually degrade in the natural environment from the effect of irradiation, which can change the surface properties of plastics and affect the migration behaviour of pollutants. Up to now, studies on the sorption/desorption behaviour of organic pollutants on aged plastics are still limited. In this study, several types of commercial plastics (polyurethane (PU), polyamide (PA), polyvinyl chloride (PVC), expanded polystyrene (EPS)) were selected to investigate the sorption and release behaviour for four kinds of bisphenols (bisphenol-F, A, B, AP). The results from Raman spectroscopy and scanning electron microscopy (SEM) analysis showed evidence of oxidization and surface cracks of plastics after irradiation. The sorption behaviour for both fresh and aged plastics were dominated by hydrophobicity. In addition, the electrostatic force, H-bonding interaction, and π-π interaction were also the important factors impacting the sorption process. The desorption kinetics behaviour indicates that desorption becomes faster after aging. Hydrophobicity is also an important factor that affects desorption behaviour. This study showed that sorption capacity for most fresh and aged plastics was enhanced by the impact of salinity and dissolved organic matter (DOM). Increased temperature could increase the desorption of bisphenols on both fresh and aged plastics, which illustrated that warm environments would promote more pollutants be released from plastics to water bodies.
U2 - 10.1016/j.chemosphere.2022.136867
DO - 10.1016/j.chemosphere.2022.136867
M3 - Journal article
VL - 310
JO - Chemosphere
JF - Chemosphere
SN - 0045-6535
M1 - 136867
ER -