Home > Research > Publications & Outputs > Spatio-temporal variations and influencing fact...

Electronic data

  • 1-s2.0-S1352231016303685-main

    Rights statement: This is the author’s version of a work that was accepted for publication in Atmospheric Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Atmospheric Environment, 139, 2016 DOI: 10.1016/j.atmosenv.2016.05.027

    Accepted author manuscript, 1.95 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Spatio-temporal variations and influencing factors of polycyclic aromatic hydrocarbons in atmospheric bulk deposition along a plain-mountain transect in western China

Research output: Contribution to journalJournal articlepeer-review

Published

Standard

Spatio-temporal variations and influencing factors of polycyclic aromatic hydrocarbons in atmospheric bulk deposition along a plain-mountain transect in western China. / Xing, Xinli; Zhang, Yuan; Yang, Dan; Zhang, Jiaquan; Chen, Wei; Wu, Chenxi; Liu, Hongxia; Qi, Shihua.

In: Atmospheric Environment, Vol. 139, 08.2016, p. 131-138.

Research output: Contribution to journalJournal articlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{df91574165d149c0b3d4eb16ab8ceeee,
title = "Spatio-temporal variations and influencing factors of polycyclic aromatic hydrocarbons in atmospheric bulk deposition along a plain-mountain transect in western China",
abstract = "Ten atmospheric bulk deposition (the sum of wet and dry deposition) samplers for polycyclic aromatic hydrocarbons (PAHs) were deployed at a plain-mountain transect (namely PMT transect, from Daying to Qingping) in Chengdu Plain, West China from June 2007 to June 2008 in four consecutive seasons (about every three months). The bulk deposition fluxes of ∑15-PAHs ranged from 169.19 μg m−2 yr−1 to 978.58 μg m−2 yr−1 with geometric mean of 354.22 μg m−2 yr−1. The most prevalent PAHs were 4-ring (39.65%) and 3-ring (35.56%) PAHs. The flux values were comparable to those in rural areas. Higher fluxes of total PAHs were observed in the middle of PMT transect (SL, YX and JY, which were more urbanized than other sites). The seasonal deposition fluxes in the sampling profile indicated seasonality of the contaminant source was an important factor in controlling deposition fluxes. PAHs bulk deposition was negatively correlated with meteorological parameters (temperature, wind speed, humidity, and precipitation). No significant correlations between soil concentrations and atmospheric deposition were found along this transect. PAHs in soil samples had combined sources of coal, wood and petroleum combustion, while a simple source of coal, wood and grass combustion for bulk deposition. There were significant positive correlation relationship (p < 0.05) between annual atmospheric bulk deposition and local PAHs emission, with biomass burning as the major contribution to the total emission of PAHs. This transect acts as an important PAHs source rather than being a sink according to the ratio of deposition/emission. Mountain cold trap effect existed in this transect where the altitude was higher than 1000 m. Long-range transport had an impact on the bulk deposition in summer. And this transect was a source to Tibetan only in summer. The forward trajectory analysis showed most air masses did not undergo long-range transport due to the blocking effect of surrounding mountains. Only a few air masses (<10%) arrived at the eastern and northern region of China or farther regions via long-range transport.",
keywords = "Polycyclic aromatic hydrocarbons, Plain-mountain transect, Bulk deposition, Spatio-temporal variation, Influencing factor",
author = "Xinli Xing and Yuan Zhang and Dan Yang and Jiaquan Zhang and Wei Chen and Chenxi Wu and Hongxia Liu and Shihua Qi",
note = "This is the author{\textquoteright}s version of a work that was accepted for publication in Atmospheric Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Atmospheric Environment, 139, 2016 DOI: 10.1016/j.atmosenv.2016.05.027",
year = "2016",
month = aug,
doi = "10.1016/j.atmosenv.2016.05.027",
language = "English",
volume = "139",
pages = "131--138",
journal = "Atmospheric Environment",
issn = "1352-2310",
publisher = "PERGAMON-ELSEVIER SCIENCE LTD",

}

RIS

TY - JOUR

T1 - Spatio-temporal variations and influencing factors of polycyclic aromatic hydrocarbons in atmospheric bulk deposition along a plain-mountain transect in western China

AU - Xing, Xinli

AU - Zhang, Yuan

AU - Yang, Dan

AU - Zhang, Jiaquan

AU - Chen, Wei

AU - Wu, Chenxi

AU - Liu, Hongxia

AU - Qi, Shihua

N1 - This is the author’s version of a work that was accepted for publication in Atmospheric Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Atmospheric Environment, 139, 2016 DOI: 10.1016/j.atmosenv.2016.05.027

PY - 2016/8

Y1 - 2016/8

N2 - Ten atmospheric bulk deposition (the sum of wet and dry deposition) samplers for polycyclic aromatic hydrocarbons (PAHs) were deployed at a plain-mountain transect (namely PMT transect, from Daying to Qingping) in Chengdu Plain, West China from June 2007 to June 2008 in four consecutive seasons (about every three months). The bulk deposition fluxes of ∑15-PAHs ranged from 169.19 μg m−2 yr−1 to 978.58 μg m−2 yr−1 with geometric mean of 354.22 μg m−2 yr−1. The most prevalent PAHs were 4-ring (39.65%) and 3-ring (35.56%) PAHs. The flux values were comparable to those in rural areas. Higher fluxes of total PAHs were observed in the middle of PMT transect (SL, YX and JY, which were more urbanized than other sites). The seasonal deposition fluxes in the sampling profile indicated seasonality of the contaminant source was an important factor in controlling deposition fluxes. PAHs bulk deposition was negatively correlated with meteorological parameters (temperature, wind speed, humidity, and precipitation). No significant correlations between soil concentrations and atmospheric deposition were found along this transect. PAHs in soil samples had combined sources of coal, wood and petroleum combustion, while a simple source of coal, wood and grass combustion for bulk deposition. There were significant positive correlation relationship (p < 0.05) between annual atmospheric bulk deposition and local PAHs emission, with biomass burning as the major contribution to the total emission of PAHs. This transect acts as an important PAHs source rather than being a sink according to the ratio of deposition/emission. Mountain cold trap effect existed in this transect where the altitude was higher than 1000 m. Long-range transport had an impact on the bulk deposition in summer. And this transect was a source to Tibetan only in summer. The forward trajectory analysis showed most air masses did not undergo long-range transport due to the blocking effect of surrounding mountains. Only a few air masses (<10%) arrived at the eastern and northern region of China or farther regions via long-range transport.

AB - Ten atmospheric bulk deposition (the sum of wet and dry deposition) samplers for polycyclic aromatic hydrocarbons (PAHs) were deployed at a plain-mountain transect (namely PMT transect, from Daying to Qingping) in Chengdu Plain, West China from June 2007 to June 2008 in four consecutive seasons (about every three months). The bulk deposition fluxes of ∑15-PAHs ranged from 169.19 μg m−2 yr−1 to 978.58 μg m−2 yr−1 with geometric mean of 354.22 μg m−2 yr−1. The most prevalent PAHs were 4-ring (39.65%) and 3-ring (35.56%) PAHs. The flux values were comparable to those in rural areas. Higher fluxes of total PAHs were observed in the middle of PMT transect (SL, YX and JY, which were more urbanized than other sites). The seasonal deposition fluxes in the sampling profile indicated seasonality of the contaminant source was an important factor in controlling deposition fluxes. PAHs bulk deposition was negatively correlated with meteorological parameters (temperature, wind speed, humidity, and precipitation). No significant correlations between soil concentrations and atmospheric deposition were found along this transect. PAHs in soil samples had combined sources of coal, wood and petroleum combustion, while a simple source of coal, wood and grass combustion for bulk deposition. There were significant positive correlation relationship (p < 0.05) between annual atmospheric bulk deposition and local PAHs emission, with biomass burning as the major contribution to the total emission of PAHs. This transect acts as an important PAHs source rather than being a sink according to the ratio of deposition/emission. Mountain cold trap effect existed in this transect where the altitude was higher than 1000 m. Long-range transport had an impact on the bulk deposition in summer. And this transect was a source to Tibetan only in summer. The forward trajectory analysis showed most air masses did not undergo long-range transport due to the blocking effect of surrounding mountains. Only a few air masses (<10%) arrived at the eastern and northern region of China or farther regions via long-range transport.

KW - Polycyclic aromatic hydrocarbons

KW - Plain-mountain transect

KW - Bulk deposition

KW - Spatio-temporal variation

KW - Influencing factor

U2 - 10.1016/j.atmosenv.2016.05.027

DO - 10.1016/j.atmosenv.2016.05.027

M3 - Journal article

VL - 139

SP - 131

EP - 138

JO - Atmospheric Environment

JF - Atmospheric Environment

SN - 1352-2310

ER -