Rights statement: ©2012. American Geophysical Union. All Rights Reserved
Accepted author manuscript, 8.2 MB, PDF document
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Straightforward reconstruction of 3d surfaces and topography with a camera
T2 - accuracy and geoscience application
AU - James, Michael
AU - Robson, Stuart
N1 - ©2012. American Geophysical Union. All Rights Reserved
PY - 2012/9
Y1 - 2012/9
N2 - Topographic measurements for detailed studies of processes such as erosion or mass movement are usually acquired by expensive laser scanners or rigorous photogrammetry. Here, we test and use an alternative technique based on freely available computer vision software which allows general geoscientists to easily create accurate 3D models from field photographs taken with a consumer-grade camera. The approach integrates structure-from-motion (SfM) and multi-view-stereo (MVS) algorithms and, in contrast to traditional photogrammetry techniques, it requires little expertise and few control measurements, and processing is automated. To assess the precision of the results, we compare SfM-MVS models spanning spatial scales of centimeters (a hand sample) to kilometers (the summit craters of Piton de la Fournaise volcano) with data acquired from laser scanning and formal close-range photogrammetry. The relative precision ratio achieved by SfM-MVS (measurement precision : observation distance) is limited by the straightforward camera calibration model used in the software, but generally exceeds 1:1000 (i.e. centimeter-level precision over measurement distances of 10s of meters). We apply SfM-MVS at an intermediate scale, to determine erosion rates along a ~50-m-long coastal cliff. Seven surveys carried out over a year indicate an average retreat rate of 0.70±0.05 m a-1. Sequential erosion maps (at ~0.05 m grid resolution) highlight the spatio-temporal variability in the retreat, with semivariogram analysis indicating a correlation between volume loss and length scale. Compared with a laser scanner survey of the same site, SfM-MVS produced comparable data and reduced data collection time by ~80%.
AB - Topographic measurements for detailed studies of processes such as erosion or mass movement are usually acquired by expensive laser scanners or rigorous photogrammetry. Here, we test and use an alternative technique based on freely available computer vision software which allows general geoscientists to easily create accurate 3D models from field photographs taken with a consumer-grade camera. The approach integrates structure-from-motion (SfM) and multi-view-stereo (MVS) algorithms and, in contrast to traditional photogrammetry techniques, it requires little expertise and few control measurements, and processing is automated. To assess the precision of the results, we compare SfM-MVS models spanning spatial scales of centimeters (a hand sample) to kilometers (the summit craters of Piton de la Fournaise volcano) with data acquired from laser scanning and formal close-range photogrammetry. The relative precision ratio achieved by SfM-MVS (measurement precision : observation distance) is limited by the straightforward camera calibration model used in the software, but generally exceeds 1:1000 (i.e. centimeter-level precision over measurement distances of 10s of meters). We apply SfM-MVS at an intermediate scale, to determine erosion rates along a ~50-m-long coastal cliff. Seven surveys carried out over a year indicate an average retreat rate of 0.70±0.05 m a-1. Sequential erosion maps (at ~0.05 m grid resolution) highlight the spatio-temporal variability in the retreat, with semivariogram analysis indicating a correlation between volume loss and length scale. Compared with a laser scanner survey of the same site, SfM-MVS produced comparable data and reduced data collection time by ~80%.
KW - structure from motion
KW - coastal erosion
KW - DEM
KW - 3D model
UR - http://www.scopus.com/inward/record.url?scp=84865436534&partnerID=8YFLogxK
U2 - 10.1029/2011JF002289
DO - 10.1029/2011JF002289
M3 - Journal article
AN - SCOPUS:84865436534
VL - 117
JO - Journal of Geophysical Research: Earth Surface
JF - Journal of Geophysical Research: Earth Surface
SN - 2169-9011
IS - 3
M1 - F03017
ER -