Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Materials Processing Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Materials Processing Technology, 303, 2022 DOI: 10.1016/j.jmatprotec.2022.117490
Accepted author manuscript, 3.35 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Study of mode transition in three-dimensional laser beam oscillating welding of aluminum alloy
AU - Liu, Zhenyu
AU - Zhang, Peilei
AU - Yan, Mingliang
AU - Yu, Zhishui
AU - Tian, Yingtao
AU - Wu, Di
N1 - This is the author’s version of a work that was accepted for publication in Journal of Materials Processing Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Materials Processing Technology, 303, 2022 DOI: 10.1016/j.jmatprotec.2022.117490
PY - 2022/5/31
Y1 - 2022/5/31
N2 - Although 2-d (two-dimensional) beam oscillation can reduce the porosity defects during laser welding of aluminum alloys, it distributes the heat input, resulting in a higher power required to form a capillary. Therefore, this research draws attention to an alternative approach, which is considered to be beneficial to laser absorption in oscillation laser beam welding, 3-d (three-dimensional) oscillation of the laser beam. (3-d oscillation means that the laser spot moves on the two-dimensional plane and the defocus change simultaneously, causing the heat input to change) An experiment was designed where the variation of oscillation frequency leads to significant changes in capillary behavior. The result shows that the increase of vertical oscillation can promote the formation of a capillary. When the oscillation frequency reaches some special values, the capillary appears and disappears periodically, such as the vertical oscillating frequency is 5 Hz, rotation oscillating frequency is 200 Hz. Meanwhile, welding pores are generally distributed at the position where the capillary begins to disappear. The reason for promoting capillary formation during 3-d laser beam oscillation, and the change of normalized temperature, which is meaningful for understanding the welding mode transition, is illustrated by a simplified model. Compared with traditional linear welding, the experimental results show that it is possible to obtain lower porosity seam during 3-d laser beam oscillation welding in low feed rate, and the mechanism of stabilizing the molten pool is discussed qualitatively.
AB - Although 2-d (two-dimensional) beam oscillation can reduce the porosity defects during laser welding of aluminum alloys, it distributes the heat input, resulting in a higher power required to form a capillary. Therefore, this research draws attention to an alternative approach, which is considered to be beneficial to laser absorption in oscillation laser beam welding, 3-d (three-dimensional) oscillation of the laser beam. (3-d oscillation means that the laser spot moves on the two-dimensional plane and the defocus change simultaneously, causing the heat input to change) An experiment was designed where the variation of oscillation frequency leads to significant changes in capillary behavior. The result shows that the increase of vertical oscillation can promote the formation of a capillary. When the oscillation frequency reaches some special values, the capillary appears and disappears periodically, such as the vertical oscillating frequency is 5 Hz, rotation oscillating frequency is 200 Hz. Meanwhile, welding pores are generally distributed at the position where the capillary begins to disappear. The reason for promoting capillary formation during 3-d laser beam oscillation, and the change of normalized temperature, which is meaningful for understanding the welding mode transition, is illustrated by a simplified model. Compared with traditional linear welding, the experimental results show that it is possible to obtain lower porosity seam during 3-d laser beam oscillation welding in low feed rate, and the mechanism of stabilizing the molten pool is discussed qualitatively.
KW - Oscillation laser weldingoy
KW - Transition of heat-conduction mode and keyhole mode
KW - Calculation of threshold temperature of keyhole mode
KW - Aluminum alloy
U2 - 10.1016/j.jmatprotec.2022.117490
DO - 10.1016/j.jmatprotec.2022.117490
M3 - Journal article
VL - 303
JO - Journal of Materials Processing Technology
JF - Journal of Materials Processing Technology
SN - 0924-0136
M1 - 117490
ER -