Rights statement: This is the author’s version of a work that was accepted for publication in Solar Energy Materials and Solar Cells. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Solar Energy Materials and Solar Cells, 240, 2022 DOI: 10.1016/j.solmat.2022.111698
Accepted author manuscript, 2.97 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Synergetic effect of absorber and condenser nano-coating on evaporation and thermal performance of solar distillation unit for clean water production
AU - Thakur, A.K.
AU - Sathyamurthy, R.
AU - Velraj, R.
AU - Saidur, R.
AU - Lynch, I.
AU - Chaturvedi, M.
AU - Sharshir, S.W.
N1 - This is the author’s version of a work that was accepted for publication in Solar Energy Materials and Solar Cells. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Solar Energy Materials and Solar Cells, 240, 2022 DOI: 10.1016/j.solmat.2022.111698
PY - 2022/6/15
Y1 - 2022/6/15
N2 - Two design modifications to increase the evaporation/condensation and freshwater yield of conventional solar stills (CSS) are presented – absorber coating with black paint (BP) in which 10 wt % reduced graphene oxide (rGO) was dispersed, and use of a nano-silicon-coated glass cover alongside the rGO coated absorber. Water contact angle analysis revealed that the hydrophilic glass/condenser hindered water droplet movement, whereas the hydrophobic silicon-coated glass enabled significantly faster water droplet movement. The rGO-coated absorber SS, with 99.2% solar absorptivity, improved the average water temperature by 11% leading to an augmented full-day freshwater yield of 3031 mL (versus 2160 mL for the CSS). The synergistic effect of the nano-silicon-coated glass and rGO-coated absorber further enhanced the full-day freshwater yield to 3410 mL. Energy/exergy analysis demonstrated enhanced efficiencies of the combined condenser and absorber coated SS of 37% (energy) and 112% (exergy), compared to the CSS. Non-linear characteristic equations described the instantaneous gain in energy efficiency of the combined absorber and condenser coated SS. Absorber/basin exhibited the highest rate of irreversibility in all three SS. The cost of water was 0.01 $/L for the dual-modified still. Water physicochemical quality analysis before and after desalination revealed that the purified water was suitable for drinking. © 2022 Elsevier B.V.
AB - Two design modifications to increase the evaporation/condensation and freshwater yield of conventional solar stills (CSS) are presented – absorber coating with black paint (BP) in which 10 wt % reduced graphene oxide (rGO) was dispersed, and use of a nano-silicon-coated glass cover alongside the rGO coated absorber. Water contact angle analysis revealed that the hydrophilic glass/condenser hindered water droplet movement, whereas the hydrophobic silicon-coated glass enabled significantly faster water droplet movement. The rGO-coated absorber SS, with 99.2% solar absorptivity, improved the average water temperature by 11% leading to an augmented full-day freshwater yield of 3031 mL (versus 2160 mL for the CSS). The synergistic effect of the nano-silicon-coated glass and rGO-coated absorber further enhanced the full-day freshwater yield to 3410 mL. Energy/exergy analysis demonstrated enhanced efficiencies of the combined condenser and absorber coated SS of 37% (energy) and 112% (exergy), compared to the CSS. Non-linear characteristic equations described the instantaneous gain in energy efficiency of the combined absorber and condenser coated SS. Absorber/basin exhibited the highest rate of irreversibility in all three SS. The cost of water was 0.01 $/L for the dual-modified still. Water physicochemical quality analysis before and after desalination revealed that the purified water was suitable for drinking. © 2022 Elsevier B.V.
KW - Absorber and condenser nano-coating
KW - Desalination
KW - Thermal performance
KW - Water droplet movement
KW - Water quality
KW - Coatings
KW - Contact angle
KW - Distillation
KW - Distillation equipment
KW - Drops
KW - Energy efficiency
KW - Evaporation
KW - Glass
KW - Graphene
KW - Potable water
KW - Quality control
KW - Solar heating
KW - Coated glass
KW - Conventional solar still
KW - Droplet movement
KW - Fresh Water
KW - Nano-coatings
KW - Reduced graphene oxides
KW - Thermal Performance
KW - Water droplets
U2 - 10.1016/j.solmat.2022.111698
DO - 10.1016/j.solmat.2022.111698
M3 - Journal article
VL - 240
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
SN - 0927-0248
M1 - 111698
ER -